Please use this identifier to cite or link to this item:
Title: Computer aided diagnostic system for brain tumor classification
Authors: Tiwari, Puneet
Supervisor: Sachdeva, Jainy
Keywords: Computer Aided Diagnostic(CAD);ANN;Regions of Interest (ROIs);Magnetic Resonance (MR);electrical and instrumentation;EIED
Issue Date: 7-Sep-2015
Abstract: The iso, hypo or hyper intensity, similarity of shape, size and location complicates the identification of brain tumors. Therefore, an adequate Computer Aided Diagnosis (CAD) system is designed for classification of brain tumor for assisting inexperience radiologists in diagnosis process. A multifarious database of real post contrast T1-weighted MR images from 10 patients has been taken. This database consists of primary brain tumors namely Meningioma (MENI- class 1), Astrocytoma (AST- class 2), and Normal brain regions (NORM- class 3). The Region of Interest(s) (ROIs) of size 20 x 20 is extracted by the radiologists from each image in the database. A total of 371 texture and intensity features are extracted from these ROI(s). An Artificial Neural Network (ANN) is used to classify these three classes as it shows better classification results on multivariate non-linear, complicated, rule based domains, and decision making domains. It is being observed that ANN provides much accurate results in terms of individual classification accuracy and overall classification accuracy. The two discrete experiments have been performed. Initially, the experiment was performed by extracting 263 features and an overall classification accuracy 78.10% is achieved, however it was noticed that MENI (class-1) was highly misclassified with AST (class-2). Further, to improve the overall classification accuracy and individual classification accuracy specifically for MENI (class-1), LAW‟s textural energy measures (LTEM) were added in the feature bank (263+108=371). The texture patterns obtained were clear enough to differentiate between MENI (class-1) and AST (class-2) despite of necrotic and cystic component and location and size of tumor. LTEM features detected fundamental texture properties such as level, edge, spot, wave and ripple in both horizontal and vertical directions which boosted the texture energy. An individual class accuracy of 91.40% is obtained for MENI (class-1), 91.43% for AST (class-2), 94.29% for NORM (class-3) and an overall classification accuracy of 92.43% is achieved.
Appears in Collections:Masters Theses@EIED

Files in This Item:
File Description SizeFormat 
3760.pdf2.35 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.