Study and Design of Comparators for High-Speed ADCs

A thesis submitted in partial fulfillment of the requirement for the award of degree of

Master of Technology

in

VLSI Design & CAD

Submitted by

Wazir Singh

Reg. No. 600961024

Under the supervision of

Dr. Alpana Agarwal

Associate Professor

Department of Electronics & Communication Engineering

Thapar University, Patiala-147004

July-2011
DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “Study and Design of Comparators for High-Speed ADCs”, in partial fulfilment of the requirement for the award of Master of Technology in VLSI Design & CAD at Thapar University, Patiala is authentic record of my own work carried out under the supervision of Dr. Alpana Agarwal, Associate Professor, Department of Electronics and Communication Engineering.

The matter embedded in this thesis has not been submitted in any other University/Institute for the award of any degree.

Date: 15/07/2011

Wazir Singh

It is certified that the above statement made by candidate is correct to the best of my knowledge and belief.

Dr. Alpana Agarwal
Associate Professor
Thapar University, Patiala.

Countersigned by:

Head
Department Electronics & Communication Engineering, Thapar University, Patiala.

Dean of Academic Affairs
Thapar University, Patiala.
ACKNOWLEDGEMENT

I express my sincere gratitude to my guide Dr. Alpana Agarwal, Associate Professor for giving valuable guidance during the course of this investigation, for her ever encouraging and timely moral support. Her enormous knowledge and intelligence always helped me unconditionally to solve various problems. I would like to thank her for introducing me to the problem and providing invaluable advice throughout the course of work. I truly admire her depth of knowledge and strong dedication to students and research that has made her one of the most successful professors ever. Her mastery at any topic is amazing, but yet she is such a humble and down-to-earth person. I’m glad that I was given opportunity to work with her. She brings out the best in her students.

I am greatly thankful to Dr. A. K. Chatterjee, Professor and Head, Department of Electronics and Communication Engineering, entire faculty and staff, especially Ms. Nidhi Agarwal and Ms. Megha Agarwal for their encouragement and inspiration for execution of this thesis work.

Next, I’d like to thank Mr. B. K. Hemant and friends Anil Singh, Sunny and Vivek for all the good times in the lab and for their help, criticisms, suggestions which makes everyday a pleasant one. Thanks so much to all for the fun, frolic and great memories here at TU.

I would like to thank my parents for their years of unyielding love, constant support and encouragement. I would also like to express my heartiest gratitude to my caring brother and sisters for boosting my moral.

I’m thankful to the Almighty God who bestowed upon His grace and always with me whenever I felt lonely.

Wazir Singh
CMOS comparators using preamplifier, suitable for high-speed analog-to-digital converters with High-Speed and Low Offset are presented in this thesis. The topologies using preamplifier completely removes the offset that is present in the input of the latched comparator. Nearly 18 mV offset voltage achieved with the structures making them suitable for flash-type and pipeline data conversion applications. Comparators are designed and simulated in Cadence® Virtuoso Analog Design Environment using UMC 180nm technology to validate their performance. Layouts of the comparators have been made in Cadence® Virtuoso Layout XL Design Environment. The post layout and process corner simulations with 1.8V supply voltage have been done for the propagation time delay, offset voltage and power dissipation.

The minimal propagation time delay of 2 ns, offset voltage of 18mV, resolution of 0.1mV and power dissipation of 175 µW is achieved by the double-clock preamplifier based comparator. The input signal frequency is half of the sampling frequency.

The single-clock preamplifier based comparator achieves the minimal propagation time delay of 0.685 ns, offset voltage of 18mV, resolution of 36 mV and power dissipation of 432.27 µW. The input frequency is one eighth of the sampling frequency.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Thesis Organization</td>
<td>2</td>
</tr>
<tr>
<td>2. Literature Survey</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Basics of CMOS Comparator</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Definition</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Static Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Gain</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2 Input Offset Voltage</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Dynamic Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1 Propagation Delay</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Preamplifier Based Latch Comparators</td>
<td>9</td>
</tr>
<tr>
<td>2.4.1 Non-clocked Comparators</td>
<td>9</td>
</tr>
<tr>
<td>2.4.2 Clocked Comparators</td>
<td>9</td>
</tr>
</tbody>
</table>
2.5 Preamplifier 11
2.6 Decision Circuit 12
2.7 Output Buffer 12

3. Design of Comparators 15
3.1 Comparators 16
3.2 Design Specification 16
 3.2.1 Preamplifier 17
 3.2.2 Decision Circuit and Latch 18
 3.2.3 Output Buffer 19
 3.2.4 Simulation Results 20
 3.2.4.1 DC Analysis 20
 3.2.4.2 AC Analysis 23
 3.2.4.3 Transient Analysis 24
 3.2.4.4 Power Measurement 25
3.3 Design Specification 26
 3.3.1 Preamplifier 26
 3.3.2 Decision Circuit 28
 3.3.3 Simulation Results 30
 3.3.3.1 DC Analysis 30
 3.3.3.2 AC Analysis 32
 3.3.3.3 Transient Analysis 32
 3.3.3.4 Power Measurement 33
3.3.4 Process Corner Simulation Results 34
 3.3.4.1 Pre-layout Simulation Results of the Double-clock Preamplifier Based Comparator 34
3.3.4.2 Pre-layout Simulation Results of the Single-clock Preamplifier Based Comparator 35

4. Layout Design and Post-layout Simulation 36
 Introduction 36
 4.1 Layout of Double-clock Preamplifier Based Comparator 36
 4.2 Layout of Single-clock Preamplifier Based Comparator 38
 4.2.1 Layout for Single-clock Preamplifier Based Comparator 39
 4.3 Post-Layout Simulation Results 41
 4.3.1 Post-Layout Simulation Results of the Double-clock Preamplifier Based Comparator 41
 4.3.2 Post-Layout Simulation Results of the Single-clock Preamplifier Based Comparator 41

5. Conclusion and Future Scope of Work 42
 5.1 Conclusion 42
 5.2 Future Scope of Work 42

References 43
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Typical block diagram of a high-speed voltage Comparator</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Circuit symbol for a comparator</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Ideal voltage transfer characteristic of comparator</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Transfer curve of a comparator with finite gain</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Transfer curve of a comparator including input offset voltage and noise</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Propagation Delay Time of Comparator</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Block diagram of non-clocked comparator</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Preamplifier and latch response</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Differential amplifier</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Decision circuit</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Self-biased differential-amplifier</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The design trade-offs</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Schematic of the preamplifier</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Schematic of the latch</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Schematic of double-clock preamplifier based comparator</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Test setup of comparator for DC response</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>DC characteristics of the comparator of Figure 3.4</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.7(a)</td>
<td>Comparator gain as a function of input voltage.</td>
<td>22</td>
</tr>
</tbody>
</table>
Figure 3.7(b) Comparator gain (in dB) as a function of input voltage

Figure 3.8 Resolution of the double-clock preamplifier based comparator

Figure 3.9 Test setup of comparator for AC response

Figure 3.10 AC response of the comparator

Figure 3.11 The transient response of comparator

Figure 3.12 Measurement of power of the comparator

Figure 3.13 Preampifier

Figure 3.14 Improved preamplifier

Figure 3.15 Decision circuit

Figure 3.16 Schematic of the single-clock preamplifier based comparator

Figure 3.17 Offset voltage of the comparator

Figure 3.18 Gain of the comparator

Figure 3.19 Gain (in dB) of the comparator

Figure 3.20 Resolution of the comparator

Figure 3.21 AC analysis of the preamplifier stage of the single-clock comparator

Figure 3.22 Transient response of the comparator

Figure 3.23 Power measurement of the comparator

Figure 4.1 Layout for double-clock preamplifier based comparator

Figure 4.2 Layout Vs Schematic match

Figure 4.3 RCX extracted view

Figure 4.4 Layout for single-clock preamplifier based comparator without multi-figure technique
Figure 4.5 Layout Vs Schematic match 38
Figure 4.6 RCX extracted view 39
Figure 4.7 Layout for single-clock preamplifier based comparator with multi-figure technique 39
Figure 4.8 Layout Vs Schematic match 40
Figure 4.9 RCX extracted view 40
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Target specification for double-clock preamplifier based comparator</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Target specification for single-clock preamplifier based comparator</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Corners simulation table</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Pre-layout simulation with process corner variations</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Pre-layout Simulation with Temperature and VDD Variations</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Pre-layout simulation with process corner variations</td>
<td>35</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Pre-layout Simulation with Temperature and VDD variations</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Post-layout simulation with process corners variations</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Post-layout simulation with process corners variations</td>
<td>41</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

ADC: Analog-to-Digital Converter
CMOS: Complementary Metal Oxide Semiconductor
FF: Fast NMOS Fast PMOS
FS: Fast NMOS Slow PMOS
ICMR: Input Common Mode Range
MOS: Metal Oxide Semiconductor
MOSFET: Metal Oxide Semiconductor Field Effect Transistor
NMOS: Negative-Channel Metal-Oxide Semiconductor
PMOS: Positive-Channel Metal-Oxide Semiconductor
SS: Slow NMOS Slow PMOS
SF: Slow NMOS Fast PMOS
TT: Typical NMOS Typical PMOS
VLSI: Very Large Scale Integration
CHAPTER

1 INTRODUCTION

1.1 Motivation

In today’s world everything is digitized but nature is analog. So we do need to convert the analog into digital that’s required ADC [1]. Nowadays high-speed devices like high-speed ADCs, operational amplifiers became of great importance and for these high-speed applications, a major thrust is given towards low power methodologies. Minimization in power consumption in these devices can be achieved by moving towards smaller feature size processes. However, as we move towards smaller feature size processes, the process variations and other non-idealises will greatly affect the overall performance of the device. Now analog-to-digital converter requires lesser power dissipation, better slew rate, high-speed, less offset. The performance limiting blocks in such ADCs are typically inter-stage gain amplifiers and comparators in which comparators are the most important. Therefore, the various design issues related to speed, gain, power dissipation, offset and resolution are of paramount importance. Dynamic comparators are being used in today’s ADCs extensively because these comparators are high speed, having zero static power consumption and provide full-swing digital level output voltage in shorter time duration but consume more power dissipation and give high input-referred offset voltage [2]. Back-to-back inverters in these dynamic comparators provide positive feedback mechanism which converts a smaller voltage difference in full scale digital level output. However, an input-referred latch offset voltage (hence offset voltage), resulting from the device mismatches such as threshold voltage, current factor \(\beta (=C_{ox}/L) \) and parasitic node capacitance and output load capacitance mismatches, limits the accuracy of such comparators. Because of this reason, the input-referred latch offset voltage is one of
the most important design parameters of the latched comparator. If large devices are used for the latching stage, a less mismatch can be achieved at the cost both of the increased delay (due to slowing the regeneration time) and the increased power dissipation. More practically, the input-referred latch offset voltage can be reduced by using the pre-amplifier preceding the regenerative output-latch stage as shown in Figure 1. It can amplify a small input voltage difference to a large enough voltage to overcome the latch offset voltage and also can reduce the kickback noise [3], [4], [7].

Figure 1: Typical block diagram of a high-speed voltage comparator [4].

1.2 Thesis Organization

This thesis provides comparators for high-speed ADCs which show less offset, better speed. The Thesis has been organized as follows.

Chapter 1 introduces motivation and organization of the thesis.

Chapter 2 provides the literature survey of the comparators and describes the comparator characteristics.

Chapter 3 provides design of comparators and provides the results of the simulation and discussion about it.

Chapter 4 discusses about layout design and post layout simulation results.

Chapter 5 conclusion and future scope of work.
2.1. Basics of CMOS Comparator

Comparators are most probably second most widely used electronic components after operational amplifiers in this world [6]. Comparators are known as 1-bit analog-to-digital converter and for that reason they are mostly used in large abundance in ADC converter. In the analog-to-digital conversion process, it is necessary to first sample the input. This sampled signal is then applied to a combination of comparators to determine the digital equivalent of the analog signal. The conversion speed of comparator is limited by the decision making response time of the comparator. The basic functionality of a CMOS comparator is used to find out whether a signal is greater or smaller than zero or to compare an input signal with a reference signal and outputs a binary signal based on comparison. The schematic symbol and basic operation of a voltage comparator are shown in Figure 2.1, this comparator can be thought of as a decision making circuit.

![Figure 2.1: circuit symbol for a comparator [3].](image)

Figure 2.1: circuit symbol for a comparator [3].
2.1.1 Definition

The comparator is a circuit that compares an analog signal (voltage) with another analog voltage or reference voltage and outputs a binary signal based on the comparison.

Figure 2.2: Ideal voltage transfer characteristic of comparator [3].

If \(V_p \geq V_n \), then \(V_o = \text{logic 1} \).
If \(V_p < V_n \), then \(V_o = \text{logic 0} \).

What is meant here by an analog signal is one that can have any of a continuance of amplitude values at a given point in time. In the strictest sense, a binary signal can have only one of two given values at any point in time, but this concept of a binary signal is too ideal for real-world situations, where there is a transition region between the two binary states.
It is important for the comparator to pass quickly through the transition region of the analog signal. The presentation on comparators will first examine the requirements and characterization of comparators.

It will be seen that comparators can be divided into open-loop and regenerative comparators. The open-loop comparators are basically op amps without compensation. Regenerative comparators use positive feedback, similar to sense amplifiers or flip-flops, to accomplish the comparison of the magnitude between two signals. A third type of comparator emerges that is a combination of the open-loop and regenerative comparators. This combination results in comparators that are extremely fast [3].

Static and dynamic characteristics of the comparator are discussed in the next section. Figure 2.2 shows the ideal characteristics of the comparator.

2.2 Static Characteristics

Static characteristics comprises of gain, resolution, input offset voltage and noise.

2.2.1 Gain

The Ideal voltage transfer characteristic of comparator states the way in which the output makes a transition between V_{OL} and V_{OH}. The output changes states for an input change of ΔV, where ΔV approaches zero. The voltage gain of comparator can be written as

$$
Gain = A_v = \lim_{\Delta V \to 0} \frac{V_{OH} - V_{OL}}{\Delta V}
$$

where ΔV is the input voltage change

(2.1)

Figure 2.3 shows the dc transfer curve of a comparator with finite gain that is an approximation to a realizable comparator circuit. The difference between this curve and the previous one is the gain, which can be expressed as

$$
A_v = \frac{V_{OH} - V_{OL}}{V_{IH} - V_{IL}}
$$

(2.2)

Where V_{IH} and V_{IL} represent the input voltage difference $V_p - V_n$ needed to just saturate the output at its upper and lower limit, respectively. Gain is a very important characteristic describing comparator operation. It defines the minimum amount of input change (resolution) necessary to make the output swing between the two binary states. These two
output states are usually defined by the input requirements of the digital circuitry driven by the comparator output. The voltages V_{OH} and V_{OL} must be adequate to meet the V_{IH} and V_{IL} requirements of the following digital stage.

![Transfer curve of a comparator with finite gain](image)

Figure 2.3: Transfer curve of a comparator with finite gain [3].

2.2.2 Input Offset Voltage

Input offset voltages can be classified as two types. (i) Systematic offset and (ii) Random offset. Offset in the Operational amplifier as well in the comparators generates due to input transistor mismatches (i.e. mismatches in threshold voltages and mismatches in transconductance parameter $\beta=\mu C_{OX} W/L$).

The output changes as the input difference crosses zero as shown in Figure 2.2. If the output did not change until the input difference reached a value V_{OS} then this difference would be defined as the offset voltage.

![Transfer curve of a comparator including input offset voltage and noise](image)

Figure 2.4: Transfer curve of a comparator including input offset voltage and noise [3].
This would not be a problem if the offset could be predicted, but it varies randomly from circuit to circuit for a given design. The sign of the V_{OS} is unknown in polarity [3].

In addition to the above characteristics, the comparator can have a differential input resistance and capacitance and an output resistance. In addition, there will also be an input common-mode resistance, R_{icm}. Because the input to the comparator is usually differential the input common-mode range is also important. The ICMR for a comparator would be that range of input common-mode voltage over which the comparator functions normally. This input common-mode range is generally the range where all transistors of the comparator remain in saturation. Even though the comparator is not designed to operate in the transition region between the two binary output states, noise is still important to the comparator. The noise of a comparator is modeled as if the comparator were biased in the transition region of the voltage-transfer characteristics. The noise will lead to an uncertainty in the transition region as shown in Figure 2.4. The uncertainty in the transition region will lead to jitter or phase noise in the circuits where the comparator is employed.

2.2 Dynamic Characteristics

Dynamic characteristics of the comparator comprises of speed or propagation time delay.

2.2.1 Propagation Delay

It is a very important parameter since it is often the speed limitation in the conversion rate of an ADC converter. Propagation delay can be defined as at how much speed the amplifier responds with applied input. In the simple words, propagation delay is the delay between output and input. Propagation delay time will be valid for either positive-going a negative-going comparator outputs. Figure 2.5 shows the propagation time delay characteristics of comparator. It can be calculated as

\[
\text{Propagation time delay} = \frac{(\text{Rising Propagation Delay time} + \text{Falling Propagation Delay Time})}{2}
\]
The propagation delay time in comparators generally varies as a function of the amplitude of the input. A larger input will result in a smaller delay time. There is an upper limit at which a further increase in the input voltage will no longer affect the delay. This mode of operation is called slewing or slew rate. Slew rate can be defined as the rate of change of output voltage with respect to time.

$$SR = \frac{dV_o}{dt}$$ \hspace{1cm} (2.3)

If the rate of rise or fall of a comparator becomes large, the dynamics may be limited by the slew rate. Slew rate comes from the relationship,

$$I = C \frac{dV}{dt}$$ \hspace{1cm} (2.4)

Where I is the current through a capacitor and V is the voltage across it. If the current becomes limited, then the voltage rate becomes limited. Therefore for a comparator that is slew rate limited we have,

$$t_p = \Delta T = \frac{\Delta V}{SR} = \frac{(V_{OH} - V_{OL})}{2 \cdot SR}$$ \hspace{1cm} (2.5)

Where SR is the slew rate of the comparator.
2.3 Preamplifier Based Latch Comparators

There are mainly two types of preamplifier based latched comparators.

2.3.1 Non-clocked Comparators

In this type of comparators, there is no need of any clock. There are three stages in this comparator as shown in Figure 2.6. The preamplifier, a positive feedback or decision making stage and an output buffer stage. The preamp stage amplifies the input signal to improve the comparator sensitivity (i.e. increases the minimum input signal with which the comparator can make a decision) and isolates the input of the comparator from switching noise coming from the positive feedback stage i.e. kick back noise effect. The positive feedback stage is used to determine which of the input signal is larger. The output buffer amplifies this information and outputs a digital signal [4], [5].

![Figure 2.6: Block diagram of non-clocked comparator](image)

2.4 Clocked Comparators

In all type of analog to digital convertors, comparator is an important building block. In this types of comparators, clock will be used in the decision circuit .There is no need of track and hold circuitry in front of the comparator. The use of the clock can greatly improve the comparator performance. In addition, most of the power in ADC is consumed by comparator, so there is a need to reduce the power consumption of comparator. The design of comparator depends on the intended application. In many low power applications, the comparator is not needed to be always on because sometimes ADCs are not required to operate at their maximum speed.
In such cases the comparator is idle for most of the time. To reduce the power consumption the comparator can be switched off for a specific period of time in a clock period. There are two types of clocked comparators: Single clock, double clock comparator. These will be discussed in details in the next chapter.

The main advantages of the preamplifier based latched comparators are their fast speed and low input referred latch offset voltage [3]. The basic principle behind the preamplifier based comparator is to use a preamplifier to build up the input change to a sufficiently large value and then apply it to the latch. This combines the best aspects of circuits with a negative exponential response (the preamplifier) with circuits with a positive exponential response (the latch). This is illustrated in Figure 2.7, in this Figure the gain of the preamplifier times the input voltage is not sufficient to reach the desired output level. Rather, during time t_1 the preamplifier amplifies the input voltage to a value of $x (V_{OH} - V_{OL})$. This voltage is applied to the latch input which then goes to the desired output voltage in time t_2. Thus, the total response time is $t_1 + t_2$. If the comparator consisted only of the preamplifier, the gain would have to be larger and the delay to make the transition from V_{OL} to V_{OH} would be longer than is $t_1 + t_2$. On the other hand, the latch would require more time than $t_1 + t_2$ if the input was small. We saw from Figure 2.7 that the larger the input to the latch the shorter the time for the output to reach its maximum value. The use of a preamplifier before the latch also has the advantage of reducing the input offset voltage of the latch by the gain of the preamplifier. Typically, pre-amplifier, which consists of one or two stages, has a gain of 3 - 18 V/V [3] and it can reduce the input referred latch offset voltage by its gain. For example, if a pre-amplifier has gain of 5 V/V and a latch stage has an offset voltage of 50 mV, then the input-referred latch offset voltage will be 10 mV. The input offset voltage of the comparator will now become that of the preamplifier, which can be autozeroed, resulting in small values of input-offset voltage.
2.4.1 Preamplifier

This circuit is a differential amplifier with pull-up can be a resistor load or an active load. In many CMOS technologies, it is difficult to fabricate resistors with tightly-controlled values or a reasonable physical size [1]. Consequently, it is desirable to replace resistor with a MOS transistor. A MOSFET can operate as a resistor if its gate and drain are shorted.

Figure 2.7: Preamplifier and latch response [3].

Figure 2.8: Differential amplifier.
The design of the preamplifier must be done in such a manner that the desired latch input voltage is achieved in minimum time. This means that the bandwidth must be as large as possible. We know that the gain bandwidth of an amplifier is normally constant. The low gain preamplifiers must compromise between a high bandwidth and sufficient gain.

2.4.2 Decision Circuit

The decision circuit is the heart of the comparator and should be capable of discriminating mV level signals. It is also called latch. The simplest form of a latch is shown in Figure 2.9 and consists of two cross-coupled NMOS transistors. The current sources are used to identify the dc currents in the transistors. The circuit uses positive feedback from the cross-gate connection of M9 and M10 to increase the gain of the decision element.

Normally, the latch has two modes of operation. The first mode disables the positive feedback and applies the input signal to the terminals designated as V_{O^+} and V_{O^-}. The second mode enables the latch and depending on the relative values of V_{O^+} and V_{O^-}, one of the outputs will go high and the other will go low.

![Figure 2.9: Decision circuit [3].](image)

2.4.3 Output Buffer

The final component in our comparator design is the output buffer. The main purpose of the output buffer is to convert the output of the decision circuit into a logic signal (i.e., 0 or VDD). The output buffer should accept a differential input signal. For a simple design for the output buffer, we can use the self-biased differential-amplifier [4]. The circuit
configuration of this amplifier differs from those of conventional CMOS differential amplifier configurations in two important ways:

1) The amplifiers are completely complementary, i.e., each n-type device operates in push-pull fashion with a corresponding p-type device.
2) The amplifiers are self-biased through negative feedback.

These two differences in the amplifier configurations result in several performance enhancements:

a) Less sensitivity of active-region biasing to variations in processing, temperature, and supply.

b) Capability of supplying switching currents that is significantly greater than the quiescent bias current.

These performance enhancements are particularly desirable in comparator applications in commercial digital CMOS VLSI integrated circuits, where precision, high-speed, ease of interfacing to ordinary logic gates, and consistently high production yields are required. This amplifier consists of two differential amplifiers each serving as the load for the other. The tail
current of the differential amplifiers become adaptive by connecting the gates of M19 and M20 to the drains of M16 and M17. This self-biasing of the amplifier creates a negative-feedback loop that stabilizes the bias voltages [8]. Any variations in processing parameters or operating conditions that shift the bias voltages away from their nominal values result in a shift in V_{bias}, that corrects the bias voltages through negative feedback. In the above circuit the devices M19 and M20 operate in the linear region. Consequently, the voltages at the drain of M19 and M20 may be set very close to the supply voltages. Since these two voltages determine the output swing of the amplifier, the output swing can be very close to the difference between the two supply rails. This large output swing makes interfacing the self-biased differential-amplifier to ordinary CMOS logic gates straightforward, since it provides a large margin for variations in the logic threshold of the gates. Another consequence of the linear-region operation of devices M19 and M20 is that it can provide output switching currents that are significantly greater than its quiescent current.

In contrast, conventional CMOS differential amplifiers cannot provide switching currents that exceed the quiescent current set by the current-source device, which operates in the saturation region. This capability of supplying momentarily large current pulses makes the self-biased differential-amplifier especially suitable for high-speed comparator applications, where it is necessary to rapidly charge and discharge output capacitive loads without at the same time consuming inordinate amounts of power. An inverter pair will add on the output of the amplifier to isolate any load capacitance from the self-biasing differential amplifier [4].

In literature survey, the preamplifier based comparator architectures available in our today’s electronic world have been studied. In the next chapter, the static and dynamic characteristics of *Preamplifier Based Comparators* i.e. comparators having a preamplifier followed by a regenerative latch stage which is again followed by an output buffer (which is basically a self-biased differential amplifier) will be analyzed.
In this chapter, the comparator design approach is presented. For high frequency circuit operation, the trade-off must be made between speed and power dissipation. Speed will be mainly influenced by the slew-rate requirements and the load impedance. The lower the load resistance (or higher the load capacitance), the more current will be needed to achieve a desired speed of operation. The gain of the comparator will influence the speed and power dissipation. The gain could also be increased by increasing the power supply voltage. However, the maximal power supply is limited by the chosen technology. The input impedance of the comparator should ideally be infinitive. The low output impedance is important concerning the (minimal) power dissipation within the last stage. Furthermore, the input and output impedances determine how the circuit interacts with preceding and subsequent stages [1].

Figure 3.1: The design trade-offs [1].
3.1 Comparator

Each ADC contains at least one comparator. A comparator itself can be considered a 1-bit ADC.

3.2 Design Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Cadence UMC 180 nm CMOS</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Speed or Propagation time delay</td>
<td><2 ns</td>
</tr>
<tr>
<td>Resolution</td>
<td><40 mV</td>
</tr>
<tr>
<td>Gain</td>
<td>>33 dB</td>
</tr>
<tr>
<td>Offset voltage</td>
<td><40 mV</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>0.6-1.6 V</td>
</tr>
<tr>
<td>Load capacitance</td>
<td>5fF</td>
</tr>
</tbody>
</table>

A critical specification is the offset voltage. We require that the offset voltage \(V_{os} \) be smaller than 40 mV. Clearly, to reach this requirement, differential amplifiers, as the ones used in the preamplifier of the comparator have an offset voltage of 10 mV to 20 mV [9] if they are realized in CMOS technology. The resolution of a comparator can be defined as

\[
\Delta V_{in} = \frac{V_{OH} - V_{OL}}{A_V} \quad (3.1)
\]

Where \(A_V \) is the DC gain and \(V_{OH} \) and \(V_{OL} \) are the output logic states high and low respectively. With 40 mV, \(A_V \) becomes 33 dB. In conclusion, to discriminate voltage differences as small as 40 mV, a minimum gain of 33 dB is required.

The response time of the comparator must be smaller than 2ns. The comparator’s response time is the sum of the preamplifier’s delay time, latch’s delay time and self-biased amplifier with inverter-pair. Neither power dissipation, nor bias current is rigorously specified. Nevertheless, efforts will be made to minimize both quantities. Of course, also the area will be kept as small as possible.
3.2.1 Preamplifier

The main design criteria’s for preamplifier are gain and bandwidth (cut-off frequency $f_{3\text{dB}}$). If the preamplifier gain is $A_V=3=9.54$ dB and $f_{3\text{dB}}$ frequency is 600 MHz. The gain-bandwidth product f_{GBW} can be increased by increasing the bias current. However, low power consumption is preferable. A bias current of 50μA is chosen.

![Figure 3.2: Schematic of the preamplifier [14].](image)

$$|A_V| = \frac{g_{m1}}{g_{m3}} = \frac{g_{m2}}{g_{m4}}$$ \hspace{1cm} (3.2)

$$f_{-3\text{dB}} = \frac{f_{\text{GBW}}}{|A_V|}$$ \hspace{1cm} (3.3)

$$g_m = \sqrt{\frac{2kp}{L}}I_D$$ \hspace{1cm} (3.4)

Where g_m is transconductance and kp is process transconductance.
3.2.2 Decision Circuit or Latch

Preamplifier amplified a minimum signal to a value much higher than the offset voltage of the latch. The amplified signal (output of preamplifier) is applied to the latch through transistors M5 and M6 which provide isolation between the latch output and the inputs to the preamplifier. Rapid changes in the output of the latch can propagate through the drain-gate capacitances of the M1 and M2 that leads to the kick-back noise. It is important to remember that ΔV_O (the difference between the latch output voltages V_{O+} and V_{O-} before the latch is enabled) will always be less than $V_{OH} - V_{OL}$. So, the argument of the logarithm is always greater than unity. There are several important observations to be made to decrease the propagation time delay of the latch. The first is that the time required for outputs after enabling the latch to reach $V_{OH} - V_{OL}$ is decreased by applying a larger input to the latch, ΔV_O, before enabling the latch. The second and more obvious is that the smaller the latch time constant, the faster the response. If the input to the latch before enabling the latch, ΔV_O, is small, the latch takes a long time for the output voltages after enabling the latch to reach $V_{OH} - V_{OL}$. Therefore, it is desirable to apply a reasonably large value of ΔV_O in order to take advantage of the rapidly increasing slope of the positive exponential characteristics of the latch but there is a compromise between gain and bandwidth of the preamplifier [10].

![Figure 3.3: Schematic of the latch [11], [12].](image_url)
The propagation time delay of a latch can be found by:

\[t_p = \tau_L \ln \left(\frac{V_{OH} - V_{OL}}{2\Delta V_o} \right) \]

(3.5)

Where \(\tau_L = 0.67C_\text{ox} \sqrt{WL^3/2kp} I_D \) is the latch time constant and \(C_\text{OX} \) is the gate capacitance per unit area.

3.2.3 Output Buffer

As already mentioned, the main purpose of the output buffer is to convert the output of the decision circuit into a logic signal (i.e., 0 or 1.8 V). The output buffer should accept a differential input signal. The overall comparator gain is the product of the gain of the preamplifier and the gain of the latch. The gain of inverters inserted after the latch does not contribute to the overall gain anymore, as the latch already establishes full logic levels at \(V_{OH} \) and \(V_{OL} \). Nevertheless, additional inverters (called buffers or drivers) are used to drive the capacitive load. The complete comparator circuit is given in Figure 3.4.

![Schematic of double-clock preamplifier based comparator](image)

Figure 3.4: Schematic of double-clock preamplifier based comparator [11].
The comparator circuit in Figure 3.4 works as follows: During nclk, the switches M11 and M12 disconnect V_{O++} and V_{O-} from the sensing nodes (V_{O+} and V_{O-}) and pulled up to VDD by M14 and M15. When M13 is closed it equalizing the sensing node voltages. A mismatch between the two differential input voltages causes an unequal amount of current to be injected into the sensing nodes. When switch M13 is released, the first regeneration phase starts, and the small current imbalance cause the cross coupled transistors M9 and M10 to pull down one of the sensing nodes. Then M11 and M12 are opened, and either V_{O++} or V_{O-} is pulled to ground, switching the state of the self-biased differential amplifier. The two non-overlapping clocks are used to controlling the comparator operation [11].

Trade-offs exist for the switch sizing: making M11 and M12 large helps pulling down the active branch quickly, but increases the glitch size when switching on. The size of the transistors has to be kept small enough to prevent the glitches from feeding through the self-biased differential amplifier to the comparator output. The size of the nclk switch can be kept small, reducing parasitic capacitance on the regeneration nodes, and increasing the gain during the sensing phase (end of nclk) because the current difference flowing through M13 causes a larger voltage imbalance of the sensing nodes.

3.2.4 Simulation Results

In this section, the comparator that was discussed in the previous section will be analyzed for their offset voltage, gain, propagation time delay, power dissipation using Cadence Spectre and Virtuoso® Analog Design Environment simulation. All the parameters of the double-clock preamplifier based comparator at the schematic level are shown below.

3.2.4.1 DC Analysis

For calculating DC analysis, both inputs V_{in-} and V_{in+} are taken as the DC voltage source. An important parameter of a comparator is its offset voltage. Offset voltage of the comparator was measured by taking the value of input, V_{in-} at 900 mV and the input, V_{in+}, of the comparator swept from 0 V to 1.8. The temperature is 27°C. From the Figure 3.5, we can see that the systematic offset voltage is approximately 18 mV.
If we take the derivative of the transfer curve, the gain of the comparator and thus the smallest difference between \(V_{\text{in}^+} \) and \(V_{\text{in}^-} \) become known. Figure 3.7 shows the gain of the comparator at about 50 (33.98 dB) so that approximately 40 mV is needed to make the comparator output change logic levels.
Figure 3.7(a): Comparator gain as a function of input voltage.

Figure 3.7(b): Comparator gain (in dB) as a function of input voltage.
Figure 3.8: Resolution of the double-clock preamplifier based comparator.

As shown in the above Figure, the minimum input voltage required for the comparator to change its states is 0.1mV.

3.2.4.2 AC Analysis

For calculating AC analysis, the input, V_{in+} is a AC voltage source and V_{in-} is taken as the DC voltage source. Using AC analysis, we find the preamplifier gain and bandwidth.

Figure 3.9: Test setup of comparator for AC response.
Obtained gain and bandwidth of the preamplifier is 9.941 dB and 600.8 MHz respectively.

3.2.4.3 Transient Analysis

For observing the transient response of comparator a AC voltage source of 40mV and 250MHz is applied to the input, V_{in^+}, and the V_{in^-} was set to 900 mV. We are driving the V_{in^+} input of the comparator 40 mV over the V_{in^-}. The transient response of comparator is shown in figure 3.11.
The propagation time delay obtained from the above Figure 3.10 is 1.61485 ns including all the three stages.

- Preamplifier = 0.28805 ns
- Latch= 1.02993 ns
- Self-biased amplifier with inverter-pair= 0.29687 ns

3.2.4.4 Power Measurement

![Figure 3.12: Measurement of power of the comparator.](image)

Average power dissipation = 175 µW.
3.3 Design Specifications

Table 3.2 Target specification for single-clock preamplifier based comparator

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Cadence UMC 180 nm CMOS</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Speed or Propagation time delay</td>
<td><500ps</td>
</tr>
<tr>
<td>Resolution</td>
<td><40 mV</td>
</tr>
<tr>
<td>Gain</td>
<td>>33 dB</td>
</tr>
<tr>
<td>Offset voltage</td>
<td><40 mV</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>0.6-1.6 V</td>
</tr>
<tr>
<td>Load capacitance</td>
<td>5fF</td>
</tr>
</tbody>
</table>

In this design all the specifications are remains same, only propagation time delay is decreased from 2 ns to 500 ps.

3.3.1 Preamplifier

There are several problems with the preamplifier of Figure 3.2. One is that the gain is very small even for large differences of W / L values [3]. To achieve a higher gain (W / L) p must decrease, thereby increasing |VGS -VTHP | and lowering the common mode level at the output nodes. Figure 3.13 is used in order to alleviate the above difficulty but at the cost of extra supply voltage [1].

Figure 3.13: preamplifier [1].
The problem of extra power supply is solved by the cross-coupled load. The load devices are connected such that in differential mode, the outer transistors act as positive resistors, while the cross-coupled devices act as negative resistors [13]. The negative resistance cancels the positive, thus presenting high differential output impedance. An advantage of cross-coupling is that the PMOS load provides implicit local common-mode feedback with no extra devices. Therefore, the common-mode voltage is stabilized. The idea is to lower the g_m of the load devices by reducing their current rather than their aspect ratio.

![Improved preamplifier](image)

Figure 3.14: Improved preamplifier [14].

Transistors M5 and M6 are used to increase the current in M1 and M2 so that the gain is enhanced by the square root of the difference of currents in M1 and M2 to the current in M3 and M4 [3], [14]. This can be illustrated as follows.

$$|A_v| = \frac{g_{m1}}{g_{m3}} = \sqrt{1 + \frac{I_5}{I_3}} \quad (3.6)$$

If I_5 is greater than I_3, the gain can be enhanced by the square root of 1 plus the ratio of I_5 to I_3. If $I_5 = 3I_3$, the gain is boosted by a factor of 2.
The sizes of M1 and M2 are set by considering the diff-amp transconductance and the input capacitance. The transconductance sets the gain of the stage, while the size of M1 and M2 determines the input capacitance of the comparator [3].

3.3.2 Decision Circuit

The positive feedback latch stage is used to determine which of the input signals is larger and extremely amplifies their difference. Transistor M13 is controlled by the clock switching; M9, M10, M11 and M12 constitute a positive feedback unit. When the clock signal Clk is high, a relatively state of the comparator to compare the results directly from the preamplifier output decision [14]. When the clock signal Clk is low, M13 transistor cut-off, and can effectively latch output signal, comparing this time to stop comparing, in the latch state. It takes positive feedback from the cross gate connection of M9 and M10. Consider $i_+ >> i_-$ so that M11 and M10 are ON and M9 and M12 are OFF. Here also $\beta_{11} = \beta_{12} = \beta_a$ and $\beta_9 = \beta_{10} = \beta_b$ for which V_{O-} is $\sim 0V$ and V_{O+} is

$$V_{O+} = \frac{2i_+}{\beta \alpha} + V_{THN}$$ \hspace{1cm} (3.7)

Where $\beta = kp\frac{W}{L}$

![Decision Circuit](image1)

Figure 3.15: Decision circuit [14].
If we start to increase i_+ and decrease i_-, when drain to source voltage of M_{10} is equal to the threshold voltage, V_{THN} of M_{9}, switching takes place. At this point M_{9} takes current away from M_{11} which decreases drain to source voltage of M_{11} and M_{10} turns off. If we assume that maximum value of V_{O+} or V_{O-} is equal to $2V_{\text{THN}}$, then under these circumstances M_{9} and M_{10} operate under cut-off or triode region under steady state conditions. Then voltage across M_{10} becomes V_{THN} and M_{10} enters into saturation and current of M_{10} is

$$i_-=\frac{\beta_b}{\beta_a}i_+ \quad (3.8)$$

This is the point at which switching takes place; i.e. M_{10} shuts off and M_{9} turns on. If $\beta_a=\beta$, then switching takes place when the currents, i_+ and i_-, are equal. A similar analysis of increasing i_+ and decreasing i_- results in

$$i_+=\frac{\beta_b}{\beta_a}i_- \quad (3.9)$$

The complete comparator circuit is given in Figure 3.16
3.3.3 Simulation Results

3.3.3.1 DC Analysis

During DC analysis of this comparator, same input parameters are applied as for double-clock preamplifier based comparator. Offset voltage obtained is approximately 18 mV.

![Figure 3.17: Offset voltage of the comparator.](image1)

![Figure 3.18: Gain of the comparator.](image2)
Gain of the comparator obtained from the derivative of the curve in Figure 3.16 and then convert to dB is 33.98 dB.

The resolving capability of this comparator is 36 mV.
3.3.3.2 AC Analysis

During AC analysis of this comparator, same input parameters are applied as given in test setup for double-clock preamplifier based comparator.

![AC Analysis](image)

Figure 3.21: AC analysis of the preamplifier stage of the single-clock comparator.

The gain and bandwidth of the preamplifier is 11.452 dB and 2.011 GHz respectively.

3.3.3.3 Transient Analysis

![Transient Analysis](image)

Figure 3.22: Transient response of the comparator.
Preamplifier’s delay = 0.10425 ns
Latch’s delay = 0.0142 ns
Self-biased amplifier with inverter-pair’s delay = 0.567265 ns
Total propagation time delay is 0.685715 ns.

3.3.3.4 Power Measurement

![Transistor Response Graph]

Figure 3.23: Power measurement of the comparator.

Average power dissipation = 432.27 µW.
3.3.4 Process Corner Simulation Results

The following is the table of corners for the simulation of comparators.

Table 3.3: Corners simulation table.

<table>
<thead>
<tr>
<th>Corners</th>
<th>VDD</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>1.8 V</td>
<td>27°C</td>
</tr>
<tr>
<td>SS</td>
<td>1.62 V</td>
<td>80°C</td>
</tr>
<tr>
<td>FF</td>
<td>1.98 V</td>
<td>-20°C</td>
</tr>
<tr>
<td>SF</td>
<td>1.8 V</td>
<td>27°C</td>
</tr>
<tr>
<td>FS</td>
<td>1.8 V</td>
<td>27°C</td>
</tr>
</tbody>
</table>

3.3.4.1 Pre-layout Simulation Results of the Double-clock Preamplifier Based Comparator.

Table 3.4: Pre-layout simulation with process corner variations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TT</th>
<th>SS</th>
<th>FF</th>
<th>SF</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation time delay (ns)</td>
<td>1.6148</td>
<td>1.8747</td>
<td>1.3929</td>
<td>1.7162</td>
<td>1.4442</td>
</tr>
<tr>
<td>Offset (mV)</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>18</td>
<td>49</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>33.98</td>
<td>33.98</td>
<td>30.41</td>
<td>33.98</td>
<td>25.67</td>
</tr>
<tr>
<td>Power (µW)</td>
<td>175</td>
<td>76.51</td>
<td>370.20</td>
<td>116.56</td>
<td>261.25</td>
</tr>
</tbody>
</table>

Table 3.5: Pre-layout Simulation with Temperature and VDD Variations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TT</th>
<th>SS</th>
<th>FF</th>
<th>SF</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation time delay (ns)</td>
<td>1.6148</td>
<td>1.8066</td>
<td>1.4216</td>
<td>1.7175</td>
<td>1.4871</td>
</tr>
<tr>
<td>Offset (mV)</td>
<td>18</td>
<td>20</td>
<td>16.3</td>
<td>18</td>
<td>49</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>33.98</td>
<td>33.06</td>
<td>33.58</td>
<td>33.98</td>
<td>25.67</td>
</tr>
<tr>
<td>Power (µW)</td>
<td>175</td>
<td>155</td>
<td>256</td>
<td>114.3</td>
<td>259.7</td>
</tr>
</tbody>
</table>
3.3.4.2 Pre-layout Simulation Results of the Single-clock Preamplifier Based Comparator.

Table 3.6: Pre-layout simulation with process corner variations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TT</th>
<th>SS</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation time delay (ns)</td>
<td>0.6857</td>
<td>0.8383</td>
<td>0.5358</td>
</tr>
<tr>
<td>Offset (mV)</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>33.98</td>
<td>33.98</td>
<td>33.98</td>
</tr>
<tr>
<td>Power (µW)</td>
<td>432.27</td>
<td>233.20</td>
<td>317.54</td>
</tr>
</tbody>
</table>

Comparators work better at all the corners as we can see from the above tables except FF and FS corner simulation of the single-clock preamplifier comparator. It may be due to the high current that leads to change of operation region or change of node voltages.
CHAPTER 4

LAYOUT DESIGN AND POST LAYOUT SIMULATION

Introduction

In comparators, it is assumed that the circuits are perfectly symmetric i.e. two sides exhibit identical properties and bias currents. But in reality identical devices suffers from a finite mismatch due to uncertainties in each step of the manufacturing process. These mismatch results in offset in the comparator. Multi-finger transistors use to reduce mismatch S/D junction area and the gate resistance. Thumb rule for fingering is “the width of each finger is chosen such that the resistance of the finger is less than the inverse transconductance associated with the finger” [1]. Cadence Virtuoso® XL Layout Editing Software is used for the layout design and DRC, LVS and RCX have been performed by using Cadence assura.

4.1 Layout of Double-clock Preamplifier Based Comparator.

Figure 4.1: Layout for double-clock preamplifier based comparator.
Figure 4.2: Layout Vs Schematic match.

Figure 4.3: RCX extracted view.
4.2 Layout of Single-clock Preamplifier Based Comparator.

Figure 4.4: Layout for single-clock preamplifier based comparator without multi-figure technique.

Figure 4.5: Layout Vs Schematic match.
4.2.1 Layout for Single-clock Preamplifier Based Comparator.

Figure 4.6: RCX extracted view.

Figure 4.7: Layout for single-clock preamplifier based comparator with multi-figure technique.
Figure 4.8: Layout Vs Schematic match.

Figure 4.9: RCX extracted view.
4.3 Post-Layout Simulation Results

4.3.1 Post-Layout Simulation Results of the Double-clock Preamplifier Based Comparator.

Table 4.1: Post-layout simulation with process corners variations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TT</th>
<th>SS</th>
<th>FF</th>
<th>SF</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation time delay (ns)</td>
<td>1.6796</td>
<td>1.9599</td>
<td>1.4968</td>
<td>1.7647</td>
<td>1.5174</td>
</tr>
<tr>
<td>Offset (mV)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>33.98</td>
<td>33.98</td>
<td>33.58</td>
<td>33.98</td>
<td>30.41</td>
</tr>
<tr>
<td>Power (μW)</td>
<td>185.11</td>
<td>87.72</td>
<td>383.48</td>
<td>124.29</td>
<td>270.34</td>
</tr>
</tbody>
</table>

4.3.2 Post-Layout Simulation Results of the Single-clock Preamplifier Based Comparator.

Table 4.2: Post-layout simulation with process corners variations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TT</th>
<th>SS</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation time delay (ns)</td>
<td>0.7475</td>
<td>0.9120</td>
<td>0.5226</td>
</tr>
<tr>
<td>Offset (mV)</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>33.98</td>
<td>33.98</td>
<td>33.98</td>
</tr>
<tr>
<td>Power (μW)</td>
<td>432.27</td>
<td>233.20</td>
<td>317.54</td>
</tr>
</tbody>
</table>

There is a slight change in the values of the parameters in the post-layout simulation of the comparators due to the parasitic capacitance and resistance formation during the layout design
CHAPTER

5 CONCLUSION AND FUTURE SCOPE OF WORK

5.1 Conclusion

In this thesis, the comparator circuits for high-speed ADCs have been investigated. The designs are mainly optimized for the low propagation time, minimal input resolution and minimal circuit area. Two comparator topologies, namely, double-clock preamplifier based comparator and single-clock preamplifier based comparator have been analyzed and designed. Both of the designs have been simulated with UMC 180nm CMOS technology.

The minimal propagation time delay of 2 ns, offset voltage of 18mV, resolution of 0.1mV and power dissipation of 175 µW is achieved by the double-clock preamplifier based comparator. The input signal frequency is half of the sampling frequency.

The minimal propagation time delay of 0.685 ns, offset voltage of 18mV, resolution of 36 mV and power dissipation of 432.27 µW is achieved by the double-clock preamplifier based comparator. The input frequency is one eighth of the sampling frequency.

5.2 Future Scope of Work

Simulation results show that both comparator give low offset voltage of 18mV. By using Auto zeroing technique the offset voltage can be reduced further. The power dissipation of double-clock preamplifier based comparator is 175 µW and for single-clock preamplifier based comparator is 432.27 µW. By adding a MOSFET switch in series with the preamplifier current source can significantly reduce static power dissipation of the preamplifier.
REFERENCES

