Modeling and Simulation of Fluid Catalytic Cracking Riser Reactor

A Thesis Report Submitted
in partial fulfillment of the requirement for
the award of degree of

MASTER OF TECHNOLOGY
IN
CHEMICAL ENGINEERING

Submitted by
Harmandeep Sharma
Roll No: 600911005

Under the Guidance of
Dr. Raj Kumar Gupta
&
Mr. Parminder Singh

Department of Chemical Engineering
Thapar University, Patiala.

DEPARTMENT OF CHEMICAL ENGINEERING
THAPAR UNIVERSITY
PATIALA-147004, INDIA
JULY 2011
ACKNOWLEDGEMENT

DECLARATION

I hereby declare that thesis entitled “Modeling of Fluid Catalytic Cracking Riser Reactor” is an authentic record of my work carried out as per the requirements for the award of degree of M.Tech. (Chemical Engineering) at Thapar University, Patiala, under the guidance of Dr. Raj Kumar Gupta, (Assistant Professor) and Mr. Parminder Singh, (Assistant Professor) Department of Chemical Engineering, Thapar University, Patiala during July 2010 to July 2011. The matter embodied in this thesis has not been submitted in part or full to any other university or institute for the award of any degree.

(Harmandeep Sharma)

This is to certify that above declaration made by the student concerned is correct to the best of our knowledge and belief.

(Raj Kumar Gupta)
Assistant Professor
Department of Chemical Engineering
Thapar University
Patiala-147004

(Parminder Singh)
Assistant Professor
Department of Chemical Engineering
Thapar University
Patiala-147004

Counter signed by:

(D. Gangacharyulu)
Head of Department
Department of Chemical Engineering
Thapar University
Patiala-147004

(S.K Mohapatra)
Dean of Academic Affairs
Thapar University
Patiala-147004
ACKNOWLEDGEMENT

No volume of words is enough to express my gratitude towards my guide, Dr. Raj Kumar Gupta (Assistant Professor) and Mr. Parminder Singh (Assistant Professor), Department of Chemical Engineering, Thapar University, who have been very concerned and have aided for all the material essential for the preparation of this thesis report. They have helped me to explore this vast topic in an organized manner and provided me with all the ideas on how to work towards a research-oriented venture.

I am also thankful to Dr. D Gangacharyulu, Head of Department, CHED and Dr. Rajeev Mehta, P.G. Coordinator and the faculty of the department of chemical engineering for the motivation and inspiration that triggered me for the thesis work.

I would also like to thank the staff members and my friends who were always there in the need of the hour and provided with all the help and facilities, which I required, for the completion of my thesis.

Most importantly, I would like to thank my parents and the Almighty for showing me the right direction out of the blue, to help me stay calm in the oddest of the times.

(Harmandeep Sharma)
ABSTRACT

A Fluid Catalytic Cracking Unit mainly consists of a riser reactor, a catalyst stripper, and a regenerator. Riser reactor is the most important part of this unit as the cracking reactions take place in the riser. At the bottom of the riser, the gas oil feed comes in contact with the hot regenerated catalyst coming from the regenerator and instantaneous vaporization occurs and the cracking reactions start. The reactions’ by product (coke) gets deposited on the catalyst surface and decreases its activity as the catalyst moves toward the exit of the riser. At the riser exit, the deactivated (spent) catalyst is separated from the hydrocarbon products’ vapor through specially designed riser termination device and sent to the regenerator for burning off the coke from its surface. The product vapors are sent to the main fractionator for recovery.

Modeling of riser helps in understanding the complex physical phenomena of this process. Complex hydrodynamics, unknown hydrocarbons in the FCC feed and involvement of different type of simultaneous reactions make riser modeling difficult. There has been lot of progress in the modeling of riser reactor. Most of the researchers have taken four to five lump model to avoid complexities in determining reaction rates. These models are easy to integrate with the material and energy balance equations. In the literature two phase or three phase flow hydrodynamics is used by various authors, heat and mass transfer resistances are ignored in most studies, and exponential catalyst deactivation model is used in most works.

The present work incorporates a four lump kinetic model having two-phase flow with cluster based approach (considering pressure drop inside the riser). The effect of cracking on phase velocities, and catalyst deactivation model based on concentration of coke on catalyst is also considered. For the solution of the model, the riser is divided into a number of small volume elements along the height. Material and energy balance equations are solved in each volume element. Product yields, riser temperature, catalyst activity, phase velocities, and riser pressure profiles are plotted and discussed. The model predictions matches well with the data reported in the literature. Simulations are also done for various cluster sizes and the effect of cluster size on cluster velocity and product yields is presented.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER-1 INTRODUCTION

1.1 Process description

1.1.1 Feed preheat

1.1.2 Riser reactor

1.1.3 Regenerator–heat/catalyst recovery

CHAPTER-2 LITERATURE REVIEW

2.1 Riser modeling

2.1.1 Hydrodynamics

2.1.2 Cracking kinetics

2.1.3 Heat transfer and mass transfer

2.1.4 Catalyst deactivation

2.2 Concluding remarks

CHAPTER-3 FCC RISER MODEL

18-25
3.1 Riser Model

3.1.1 Model equations

CHAPTER-4 RESULTS AND DISCUSSION

CONCLUSIONS AND FUTURE RECOMMENDATIONS

NOMENCLATURE

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1 Schematic of FCC unit</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2 Two stage stripper</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3 Air distributor</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4 Schematic of a volume element in the riser</td>
<td>19</td>
</tr>
<tr>
<td>Figure 5 Schematic for four lump kinetic model</td>
<td>22</td>
</tr>
<tr>
<td>Figure 6 Conversion/ product yield along riser height</td>
<td>28</td>
</tr>
<tr>
<td>Figure 7 Temperature drop along riser height</td>
<td>29</td>
</tr>
<tr>
<td>Figure 8 Phase velocities along riser height</td>
<td>30</td>
</tr>
<tr>
<td>Figure 9 Catalyst activity along riser height</td>
<td>31</td>
</tr>
<tr>
<td>Figure 10 Pressure drop along the riser height</td>
<td>32</td>
</tr>
<tr>
<td>Figure 11 Effect of cluster size on cluster phase velocity</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1 Main features of some FCC riser models</td>
<td>16</td>
</tr>
<tr>
<td>Table 2 Molecular weight of various lumps</td>
<td>20</td>
</tr>
<tr>
<td>Table 3 Stoichiometric coefficients</td>
<td>24</td>
</tr>
<tr>
<td>Table 4 Heat of reaction data</td>
<td>25</td>
</tr>
<tr>
<td>Table 5 Plant data used for riser simulation</td>
<td>26</td>
</tr>
<tr>
<td>Table 6 Parameters used for riser simulations</td>
<td>26</td>
</tr>
<tr>
<td>Table 7 Kinetic parameters used in the model</td>
<td>27</td>
</tr>
<tr>
<td>Table 8 Model predictions of product yields at riser exit for different cluster sizes</td>
<td>33</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

Fluid catalytic cracking unit (FCCU) converts heavy hydrocarbon petroleum fractions into more usable products such as gasoline, middle distillates, and light olefins. Fluid catalytic cracking (FCC) is considered the primary conversion process in an integral refinery. As of 2006, FCC units were in operation at 400 petroleum refineries worldwide and about one-third of the crude oil refined in those refineries is processed in an FCC to produce high-octane gasoline and fuel oils (Speight, 2006). Most of the existing FCC units have been designed or modified by six major technology licensors:

1. ABB Lummus Global
2. Exxon Research and Engineering (ER&E)
4. Shell Oil Company
5. Stone & Webster Engineering Corporation (SWEC)
6. UOP (Universal oil products)

Although the mechanical configuration of individual FCC units may differ, their common objective is to upgrade low-value feedstock to more valuable products. Worldwide, about 45% (Reza, 2000) of all gasoline comes from FCC and ancillary units, such as the alkylation unit. Since the start-up of the first commercial FCC unit in 1942, many improvements have been made. These improvements have enhanced the unit's mechanical reliability and its ability to crack heavier, lower value feed stocks. The FCC has a remarkable history of adapting to continual changes in market demands.

FCCU mainly consists of a riser reactor, a catalyst stripper, and a regenerator. Riser reactor is the most important part of this unit as the cracking reactions take place in the riser. Modern FCC units have short diameter risers (0.8-1.2 m) with lengths varying from 30-40 m. The Vacuum gas oil (feedstock) has an initial boiling point of 340 °C or higher at atmospheric pressure and an average molecular weight ranging from about 200 to 600 or higher. In the riser reactor, the contact time between the gas oil and the catalyst is very short (less than 5 seconds). At the bottom of the riser, the gas oil feed comes in contact with the hot regenerated catalyst coming
from the regenerator and instantaneous vaporization occurs. As a result, the cracking reactions start and the density of the oil decrease causing an increase in the velocity of the vapor/gas phase. The increasing gas phase velocity accelerates the velocity of the catalyst and the riser behaves as a transport bed reactor. The cracking reactions’ by product (coke) gets deposited on the catalyst surface and decreases its activity as the catalyst moves toward the exit of the riser. At the riser exit, the deactivated (spent) catalyst is separated from the hydrocarbon products’ vapor through specially designed riser termination device and sent to the regenerator for burning off the coke from its surface. The product vapors are sent to the main fractionator for recovery.

1.1 Process description

The FCC unit uses a micro-spheroid catalyst, which behaves like liquid when properly aerated by gas. The main purpose of the unit is to convert high-boiling petroleum fractions called gas oil to high value, high-octane gasoline and heating oil. Gas oil is the portion of crude oil that commonly boils in the 650°F to 1,050°F (330° to 550°C) range. Before proceeding, it is helpful to examine how a typical catalyst cracker fits into the refinery process (Figure 1). A petroleum refinery is composed of several processing units that convert raw crude oil into usable products such as gasoline, diesel, and jet fuel. The crude unit is the first unit in the refining process. Here, the raw crude is distilled into several intermediate products: naphtha, kerosene, diesel, and gas oil. The heaviest portion of the crude oil, which cannot be distilled in the atmospheric tower, is heated and sent to the vacuum tower where it is split into gas oil and tar.

The FCC process is very complex. For clarity, the process description has been broken down into three separate sections:

- Feed Preheat.
- Riser Reactor
- Regenerator—Heat/Catalyst Recovery.
1.1.1 Feed preheat

The feed is normally heated to a temperature of 500°F to 700°F (260°C to 370°C). The main fractionator bottoms pump-around and/or fired heaters are the usual sources of heat. The feed is first routed through heat exchangers using hot streams from the main fractionator. The main fractionator top pump-around, light cycle oil product, and bottoms pump-around are commonly used. Removing heat from the main fractionator is at least as important as preheating the feed. Most FCC units use fired heaters for FCC feed final preheat. Feed temperature is raise to 300-500°F (150-260°C) which is generally sufficient for most of the FCCUs.
1.1.2 Riser reactor

The riser reactor is the heart of the FCC process. In a modern catalyst cracking units, virtually all the reactions occur in 1.5 to 3.0 seconds before the catalyst and the products are separated in the reactor. From the pre-heater, the feed enters the riser near the base where it contacts the regenerated catalyst (Figure 1). The ratio of catalyst to oil is normally in the range of 4:1 to 9:1 by weight. The heat absorbed by the catalyst in the regenerator provides the energy to heat the feed to its desired reactor temperature. The heat of the reaction occurring in the riser is endothermic (i.e., it requires energy input). The circulating catalyst provides this energy. The typical regenerated catalyst temperature ranges between 1250°F to 1350°F (677°C to 732°C).

Catalytic reactions occur in the vapor phase. After vaporization of feed cracking reactions starts. The expanding volumes of the vapors that are generated are the main driving force to carry the catalyst up the riser. Catalyst and products are quickly separated in the reactor. However, some thermal and non-selective catalytic reactions continue. A number of refineries are modifying the riser termination devices to minimize these reactions. The riser is a vertical pipe. It usually has 4 to 5 inch (10 to 13 cm) thick refractory lining for insulation and abrasion resistance. Typical risers are 2 to 6 feet (60 to 180 cm) in diameter and 75 to 120 feet (25 to 30 meters) long. The ideal riser simulates a plug flow reactor, where the catalyst and the vapor travel the length of the riser with minimum back mixing. Efficient contacting of the feed and catalyst is critical for achieving the desired cracking reactions. Steam is commonly used to atomize the feed. Smaller oil droplets increase the availability of feed at the reactive acid sites on the catalyst. With high-activity zeolite catalyst, virtually all of the cracking reactions take place in three seconds or less. Risers are normally designed for an outlet vapor velocity of 50 ft/sec to 75 ft/sec (15.2 to 22.8 m/sec). The average hydrocarbon residence time is about two seconds (based on outlet conditions). As a consequence of the cracking reactions, a hydrogen-deficient material called coke is deposited on the catalyst, reducing catalyst activity.

After exiting the riser, catalyst entrained by the vapors is separated in the cyclone separators. Most FCC units employ either single or two-stage cyclones to separate the remaining catalyst particles from the cracked vapors. The cyclones collect and return the catalyst to the stripper through the dip-legs and flapper/trickle valves. The product vapors exit the cyclones and flow to
the main fractionator for recovery. It is important to separate catalyst and vapors as soon as they enter the reactor. Otherwise, the extended contact time of the vapors with the catalyst in the reactor housing will allow for non-selective catalytic re-cracking of some of the desirable products. The extended residence time also promotes thermal cracking of the desirable products.

Stripping section:

As the spent catalyst falls into the stripper, hydrocarbons are adsorbed on the catalyst surface, hydrocarbon vapors fill the catalyst pores, and the vapors entrained with the catalyst also fall into the stripper. Stripping steam, at a rate of 2 to 5 lbs per 1,000 lbs (2 kg to 5 kg per 1,000 kg) is primarily used to remove the entrained hydrocarbons between catalyst particles. Stripping steam does not address hydrocarbon desorption and hydrocarbons filling the catalyst pore. However, reactions continue to occur in the stripper. These reactions are driven by the reactor temperature and the catalyst residence time in the stripper. The higher temperature and longer residence time allow conversion of adsorbed hydrocarbons into "clean lighter" products. A two stage stripper design (Figure 2) is used in commercial work. An efficient stripper design generates intimate contact between the catalyst and steam. Reactor strippers are commonly designed for a steam superficial velocity of 0.75 ft/sec (0.23 m/sec) and a catalyst flux rate of 500 to 700 lbs per minute per square foot (2.4 kg to 3.4 kg per minute per square meter).

At too high a flux, falling catalyst tends to entrain steam, thus reducing the effectiveness of stripping steam. It is important to minimize the amount of hydrocarbon vapors carried through to the regenerator, but not all the hydrocarbon vapors can be displaced from the catalyst pores in the stripper. A fraction of them are carried with the spent catalyst into the regenerator. These hydrocarbon vapors/liquid have a higher hydrogen-to-carbon ratio than the coke on the catalyst.

The drawbacks of allowing these hydrogen rich hydrocarbons to enter the regenerator are as follows:

Loss of liquid product: Instead of the hydrocarbons burning in the regenerator, they could be recovered as liquid products.

Loss of throughput: The combustion of hydrogen to water produces 3.7 times more heat than the combustion of carbon to carbon dioxide. The increase in the regenerator temperature caused by excess hydrocarbons could exceed the temperature limit of the regenerator internals and force the unit to a reduced feed rate mode of operation.
Loss of catalyst activity: The higher regenerator temperature combined with the formation of steam in the regenerator reduces catalyst activity by destroying the catalyst's crystalline structure. The flow of spent catalyst to the regenerator is typically controlled by a valve that slides back and forth. This slide valve is controlled by the catalyst level in the stripper. The catalyst height in the stripper provides the pressure head, which allows the catalyst to flow into the regenerator. The exposed surface of the slide valve is usually lined with refractory to withstand erosion. In a number of earlier FCC designs, lift air is used to transport the spent catalyst into the regenerator.
1.1.3 Regenerator–heat/catalyst recovery

The regenerator has two main functions: it restores catalyst activity and supplies heat to crack the feed. The spent catalyst entering the regenerator contains between 0.4 wt% and 2.5 wt% coke, depending on the quality of the feedstock. Components of coke are carbon, hydrogen, and trace amounts of sulfur and nitrogen.

Air provides oxygen for the combustion of coke and is supplied by one or more air blowers. The air blower provides sufficient air velocity and pressure to maintain the catalyst bed in a fluid state. The air enters the regenerator through an air distributor located near the bottom of the vessel.

![PIPE GRID DESIGN](image)

Figure 3: Air distributor

The design of an air distributor is important in achieving efficient and reliable catalyst regeneration (Figure 3). Air distributors are typically designed for a 1.0 psi to 2.0 psi (7 to 15 Kpa) pressure drop to ensure positive air flow through all nozzles. There are two regions in the regenerator: the dense phase and the dilute phase. At velocities common in the regenerator, 2 ft/sec to 4 ft/sec (0.6 to 1.2 m/sec), the bulk of catalyst particles are in the dense bed immediately above the air distributor. The dilute phase is the region above the dense phase up to the cyclone inlet, and has a substantially lower catalyst concentration.
Standpipe/slide valve:
During regeneration, the coke level on the catalyst is typically reduced to 0.05%. From the regenerator, the catalyst flows down a transfer line commonly referred to as a standpipe. The standpipe provides the necessary pressure to circulate the catalyst around the unit. Some standpipes extend into the regenerator, and the top section is often called a catalyst hopper. The hopper, internal to the regenerator, is usually an inverted cone design. In units with "long" catalyst standpipes, external withdrawal hoppers are often used to feed the standpipes. The hopper provides sufficient time for the regenerated catalyst to be "de-bubbled" before entering the standpipe. Standpipes are typically sized for a flux rate in the range of 100 to 300 lb/sec/ft² (500 to 1,500 kg/sec/m²) of circulating catalyst. In most cases, sufficient flue gas is carried down with the regenerated catalyst to keep it fluidized. However, longer standpipes may require external aeration to ensure that the catalyst remains fluidized. A gas medium, such as air, steam, nitrogen, or fuel gas, is injected along the length of the standpipe. The catalyst density in a well-designed standpipe is in the range of 35 to 45 lb/ft³ (560 to 720 kg/m³). The flow rate of the regenerated catalyst to the riser is commonly regulated by either a slide or plug valve. The operation of a slide valve is similar to that of a variable orifice. Slide valve operation is often controlled by the reactor temperature. Its main function is to supply enough catalyst to heat the feed and achieve the desired reactor temperature.

Catalyst separation:
As flue gas leaves the dense phase of the regenerator, it entrains catalyst particles. The amount of entrainment largely depends on the flue gas superficial velocity. The larger catalyst particles, 50microns-90microns diameter, fall back into the dense bed. The smaller particles, 0microns-50microns diameter, are suspended in the dilute phase and carried into the cyclones. Most FCC unit regenerators employ 4 to 16 parallel sets of primary and secondary cyclones. The cyclones are designed to recover catalyst particles greater than 20 microns diameter. The recovered catalyst particles are returned to the regenerator via the diplegs. The distance above the catalyst bed at which the flue gas velocity has stabilized is referred to as the transport disengaging height (TDH). At this height, the catalyst concentration in the flue gas stays constant; none will fall back into the bed. The centerline of the first-stage cyclone inlets should be at TDH or higher. Otherwise, excessive catalyst entrainment will cause extreme catalyst losses.
Flue gas heat recovery schemes:
The flue gas exits the cyclones to a plenum chamber in the top of the regenerator. The hot flue gas holds an appreciable amount of energy. Various heat recovery schemes are used to recover this energy. In some units, the flue gas is sent to a CO boiler where both the sensible and combustible heat is used to generate high-pressure steam. In other units, the flue gas is exchanged with boiler feed water to produce steam via the use of a shell/tube or box heat exchanger. In most units, about two-thirds of the flue gas pressure is let down via an orifice chamber or across an orifice chamber. The orifice chamber is vessel containing a series of perforated plates designed to maintain a given backpressure upstream of the regenerator pressure control valve. In some larger units, a turbo expander is used to recover this pressure energy. To protect the expander blades from being eroded by catalyst, flue gas is first sent to a third-stage separator to remove the fines. The third-stage separator, which is external to the regenerator, contains a large number of swirl tubes designed to separate 70% to 95% of the incoming particles from the flue gas. From the expander, the flue gas goes through a steam generator to recover thermal energy. Depending on local environmental regulations, an electrostatic precipitator (ESP) or a wet gas scrubber may be placed downstream of the waste heat generator prior to release of the flue gas to the atmosphere. Some units use an ESP to remove catalyst fines in the range of 5microns-20microns from the flue gas. Some units employ a wet gas scrubber to remove both catalyst fines and sulfur compounds from the flue gas stream.

Catalyst handling facilities:
Even with proper operation of the reactor and regenerator cyclones, catalyst particles smaller than 20 microns still escape from both of these vessels. The catalyst fines from the reactor collect in the fractionator bottoms slurry product storage tank. The recoverable catalyst fines exiting the regenerator are removed by the electrostatic precipitator or lost to the environment. Catalyst losses are related to:

- The design of the cyclones
- Hydrocarbon vapor and flue gas velocities
- The catalyst's physical properties
- High jet velocity
• Catalyst attrition due to the collision of catalyst particles with the vessel internals and other catalyst particles

The activity of catalyst degrades with time. The loss of activity is primarily due to impurities in the FCC feed, such as nickel, vanadium, and sodium, and to thermal and hydrothermal deactivation mechanisms. To maintain the desired activity, fresh catalyst is continually added to the unit. Fresh catalyst is stored in a fresh catalyst hopper and, in most units, is added automatically to the regenerator via a catalyst loader. The circulating catalyst in the FCC unit is called equilibrium catalyst, or simply E-cat. Periodically, quantities of equilibrium catalyst are withdrawn and stored in the E-cat hopper for future disposal. A refinery that processes residue feedstock can use good-quality E-cat from a refinery that processes light sweet feed. Residue feedstock contains large quantities of impurities, such as metals and requires high rates of fresh catalyst. The use of a good-quality E-cat in conjunction with fresh catalyst can be cost-effective in maintaining low catalyst costs.

The present work incorporates a four lump kinetic model, two-phase flow with cluster based approach (considering pressure drop inside the riser). The effect of cracking on phase velocities, and catalyst deactivation model based on concentration of coke on catalyst is also considered. The feed oil vaporization is assumed to be instantaneous and heat and mass transfer resistances are ignored. For the solution of the model, the riser is divided into a number of small volume elements along the height. Material and energy balance equations are solved in each volume element. Fligner et al. (1994) proposed a cluster model approach to explain experimentally observed high slip factors. The authors used a cluster size of 6 mm. In the present work, simulations are done to see the effect of cluster size on the cluster velocity and product yields.
Chapter 2

Literature review

In this chapter a brief review of the work done on the riser modeling is presented. A more detailed review of the FCC riser modeling is given by Gupta et al. (2005, 2010). A detailed review on riser hydrodynamics is given in Berruti et al. (1995).

2.1 Riser modeling

Modeling of riser reactor is very complex due to complex hydrodynamics, unknown multiple reactions coupled with mass transfer and heat transfer resistances. Moreover, the conditions keep changing all along the riser height due to cracking which causes molar expansion in the gas phase and influences the axial and radial catalyst density in the riser. In the literature, numerous models of FCC riser are available with varying degrees of simplifications and assumptions.

2.1.1 Hydrodynamics

When vaporization of feed occurs, only solid phase (catalyst & coke) and vapor phase (steam, hydrocarbon feed and product vapor) are left. The simplest hydrodynamic models assume plug flow for both the phases. However, there is considerable back mixing in the solid phase because of slip between the solid and vapor phase which makes the prediction of solid velocity profile difficult.

CFB (Circulating Fluidized Bed) risers, employs different mathematical formulations to predict the relationship between solid concentration, operating conditions, and riser geometry. Harris and Davidson (1994) proposed three broad categories of these models: (i) the models that predict the axial variation of the solid suspension density, but not the radial variation; (ii) the models that predict the radial variation and the high average slip velocities by assuming two or more regions, such as core-annulus or clustering annulus flow models; and (iii) the models which are based on the numerical modeling of the conservation equations for mass, momentum, and energy for gas and solid phases.
Particular kind of model selection depends on its intended application. Models of type (i) and type (ii) are best suited to investigate the effect of operating conditions and riser dimensions on the riser flow structure. These models can be easily coupled with the reaction kinetic models to simulate the performance of CFB risers (Pugsley et al., 1992). Type (iii) models are suitable to investigate the local flow structure and the impact of geometry in CFB risers.

Pugsley and Berruti (1995) modified the model of Wirth (1991) by considering the solids flow in core and annulus regions and calculated the core-to-annulus solids interchange coefficient. In another work (Pugsley and Berruti, 1996) they proposed a type (ii) predictive model based on fundamental principles and empirical relations. Theologos and Markatos (1993) proposed a three dimensional mathematical model considering two phase flow, heat transfer, and three lump reaction scheme in the riser reactor. The authors developed the full set of partial differential equations that describes the conservation of mass, momentum, energy and chemical species for both phases, coupled with empirical correlations concerning inter-phase friction, inter-phase heat transfer, and fluid to wall frictional forces. The model can predict pressure drop, catalyst holdup, inter-phase slip velocity, temperature distribution (in both phases) and yield distribution all over the riser. Theologos et al. (1997) coupled the model of Theologos and Markatos (1993) with a ten lump reaction scheme to predict the yield pattern of the FCC riser reactor. Theologos et al. (1999) accounted for feed atomization effect on riser performance in their model. Gao et al. (1999) developed a model that predicted three-dimensional, two-phase flow inside the riser-type reactor.

Gupta et al. (2007) predicted the phase velocities and increase in molar flux of gas all along the riser height. Malay et al. (1999) and Han and Chung (2001b), in their FCC riser simulations, have also predicted similar phase velocity profiles. Also, density, viscosity, and void fraction change due to modifications in the operating conditions (temperature and pressure) and because of mole generation (Leon-Becerril et al. 2004).

A two phase 2-D flow model was presented using transient Eulerian approach with a simple three lumps kinetic scheme (Benyahia et al. 2003). Zimmermann and Taghipour (2005) simulated the hydrodynamics and reaction kinetics of gas-solid fluidized beds containing
fluid catalytic cracking (FCC) particles. The authors included the kinetic term in an additional transport equation for modeling the reaction kinetics. Nayak et al. (2005) used the Eulerian–Lagrangian approach to simulate simultaneous evaporation and cracking reactions occurring in FCC riser reactors. Eulerian–Lagrangian approach was used for the simulation of gas-solid flow in FCC process (Wu et al. 2010). Novia et al. (2007) developed a model to simulate the 3-D hydrodynamics and reaction kinetics (3-lump) in FCC riser reactor. Baurdez et al. (2009) proposed a method for steady-state/transient, two-phase gas–solid simulation of a FCC riser reactor. Authors used a simple four lump kinetic model to demonstrate the feasibility of the method. Kumar and Reddy (2011) carried out CFD simulations and demonstrated that most of the reaction occurs in the first 10 m height of FCC riser.

2.1.2 Cracking kinetics

For modeling of cracking kinetics, Weekman and Nace (1970) divided the FCC feed stock and products into three lumps: feedstock lump, gasoline lump, and dry gas and coke lump. The kinetic parameters of the model were evaluated using the experimental data. Lee et al. (1989) proposed a four lump kinetic model by separating the coke from the three lump model of Weekman and Nace (1970). The model is still popular because of its simplicity and ease of formulation and solution of kinetic and material and energy equations. This simple lumping approach for kinetic modeling was further extended by various researchers by increasing the number of lumps in their models. Following are the other kinetic models proposed by various workers: five lump models (Larocca et al., 1990; Ancheyta-Juarez et al., 1999), six lump model (Coxson and Bischoff, 1987; Takatsuka et al., 1987), ten lump model (Jacob et al., 1976), eleven lump model (Mao et al., 1985), twelve lump model (Oliveira et al., 1987), thirteen lump model (Sa et al., 1995), and nineteen lump model (Pitault et al., 1994).

Jacob et al. (1976) included the chemical nature of the feed in their ten lump kinetic model. This model is used by Arbel et al. (1995), Ellis et al. (1998), and Nayak et al. (2005) for their FCC modeling studies.

Gupta et al. (2007) proposed a new kinetic scheme based on pseudo components cracking and developed a semi-empirical model for the estimation of the rate constants of the
resulting reaction network. Fifty pseudo components (lumps) are considered in this scheme resulting in more than 10,000 reaction possibilities. The model can be easily used to incorporate other aspects of the riser modeling. This kinetic model is used by Gupta and Kumar (2008) and Ruqiang et al. (2008) for their works on FCC modeling.

2.1.3 Heat transfer and mass transfer

When complete vaporization of feed droplets occurs, a vapor phase (hydrocarbons and steam) and a solid phase (catalyst particles) exist in the riser. There is considerable temperature difference in these phases near the bottom of the riser. Since, the temperature influences the reaction rates the prediction of inter-phase heat transfer becomes important. From heat transfer point of view, very early models assumed isothermal riser. Most of the riser models assume instantaneous thermal equilibrium between the vapor and solid phases at the riser inlet. Theologos et al. (1999) developed a 3-D mathematical model that predicts the two-phase flow, heat transfer and chemical reaction in catalytic cracking riser reactor. They used a correlation of Nusselt number as a function of Reynolds number.

External mass transfer resistances in the riser are neglected in most of the works on FCC riser modeling (Corella and Frances, 1991a; Martin et al., 1992; Ali et al., 1997; Derouin et al., 1997; Theologos et al., 1999; Das et al., 2003, Berry et al., 2004; Gupta et al., 2007, Gupta and Kumar, 2008). However, considering mass transfer resistance between the phases helps in predicting the concentration of the reacting species at the catalyst surface. Flinger et al. (1994) in their model considered mass transfer to occur between the two phases. Gupta and Subba Rao (2001) and Nayak et al. (2005) modeled the inter-phase mass transfer using the correlation for Sherwood number proposed by Ranz and Marshall (1952). Intra-pellet mass transfer has the effect of decreasing the reactant concentration within the pellet. Consequently, the average rate will be less than what it would be in the absence of internal concentration gradient (Smith, 1981). Pruski et al. (1996) determined adsorption coefficients for four lumps, while cracking gas oil. Bidabehere and Sedran (2001) developed a model to study the effects of diffusion, adsorption, and reaction at high temperature inside the particles of commercial FCC catalysts and experimentally studied the relative importance of these phenomena. Dupian
et al. (2006) have discussed the external and internal mass transfer correlations used for modeling the FCC riser.

2.1.4 Catalyst deactivation

Deactivation of FCC catalyst occurs due to the deposition of coke on the catalyst surface during cracking reactions. Most of the popular theories on deactivation are based on the time-on-stream concept. Various models for time dependent catalyst decay have been proposed for different lengths of contact time (Weekman, 1968, Nace et al., 1971; Paraskos et al., 1976; Shah et al., 1977). Froment and Bischoff (1990) proposed a mechanistic based model considering catalyst decay rate as a function of the fraction of active sites and the concentration of the reactants. Corella and Menendez (1986) developed a model in which the catalyst surface was assumed to be non-homogeneous with acidic sites of varying strength. Corella and Monzon (1988) developed a model for deactivation and coking kinetic relations between activity, concentration of coke and time on stream for four different mechanisms of coke formation and growth. Corella (2004) developed a selective deactivation kinetic model for the commercial FCC catalysts and feed-stocks.

Different empirical equations have been used by various researchers to fit their experimental data. However, there are two functions that fit the experimental data quite well: power function and exponential function. The exponential function is more widely used. Larocca et al. (1990) reported that the catalyst deactivation can be represented by both an exponential decay function and a power decay function with an average exponent of 0.1 to 0.2. Kraemer et al. (1991) used the data from two different experimental reactors and showed that exponential decay function or power law function could equally represent the data; however, the power law assumes the unrealistic limits of infinite catalyst activity at zero time-on-stream and requires two parameters to describe deactivation. They further concluded that the simple first order decay function is an effective equation for describing the catalyst activity decay for short reaction times (less than 20 seconds).

The main features of some of the riser models available in literature are given in Table 1.
Table 1: Main features of some FCC riser models

<table>
<thead>
<tr>
<th>Feature</th>
<th>Paraskos et al. 1976</th>
<th>Corella and Frances 1991</th>
<th>Theologous et al. , 1993</th>
<th>Gupta et al., 2001</th>
<th>Gupta et al., 2007</th>
<th>Baudrez et al., 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaporization</td>
<td>Instantaneous</td>
<td>Instantaneous</td>
<td>Instantaneous</td>
<td>Considered</td>
<td>Instantaneous</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>Temperature variation</td>
<td>Isothermal</td>
<td>Adiabatic</td>
<td>Adiabatic</td>
<td>Adiabatic</td>
<td>Adiabatic</td>
<td>Adiabatic</td>
</tr>
<tr>
<td>Molar expansion</td>
<td>Not considered</td>
<td>Considered</td>
<td>Not considered</td>
<td>Considered</td>
<td>Considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Axial catalyst holdup</td>
<td>Slip factor 1</td>
<td>Slip factor varied from 1.15 to 1.05 along the riser height</td>
<td>CFD model</td>
<td>Calculated using momentum balance on clusters ignoring pressure drop in the riser</td>
<td>Calculated using momentum balance on clusters considering pressure drop in the riser</td>
<td>CFD model</td>
</tr>
<tr>
<td>Mass transfer resistance</td>
<td>Not considered</td>
<td>Not considered</td>
<td>Not considered</td>
<td>Considered</td>
<td>Not considered</td>
<td>Considered</td>
</tr>
<tr>
<td>Kinetic model</td>
<td>Three lump</td>
<td>Five lump</td>
<td>Three lump</td>
<td>Four lump</td>
<td>Fifty lump (Pseudo component based approach)</td>
<td>Four lump</td>
</tr>
<tr>
<td>Deactivation</td>
<td>Non-selective, based on the coke concentration on catalyst</td>
<td>Non-selective, based on the time-on-stream of catalyst</td>
<td>Non-selective, based on the coke concentration on catalyst</td>
<td>Non-selective, based on the coke concentration on catalyst</td>
<td>Non-selective, based on the coke concentration on catalyst</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Concluding remarks

There has been lot of progress in the modeling of riser reactor. Most of the researchers have taken four to five lump model to avoid complexities in determining reaction rates. Four lump kinetic model is used by various authors in their work (Lee et al., 1989; Gianetto et al., 1994; Pitault et al., 1995; Blasetti and de lasa, 1997; Oliveira and Biscaia 1989; Anchetya et al. 1997; Berry et al., 2004; Gupta and Subba Rao 2001, 2003; Nayak et al., 2005, Baurdez et al 2009). In the literature two phase or three phase flow hydrodynamics is used by various authors, heat and mass transfer resistances are ignored in most studies, and exponential catalyst deactivation model is used in most works.

In this work, a four lump kinetic model, two phase hydrodynamic model, and exponential catalyst deactivation model is used to simulate the FCC riser.
Chapter 3

FCC Riser Model

In this chapter the mathematical model of the FCC riser used in this work is discussed. The model incorporates a four lump kinetic model, two-phase flow with cluster based approach (including pressure drop inside the riser), effect of cracking on phase velocities, and catalyst deactivation model based on concentration of coke on catalyst.

3.1 Riser Model

For the solution of the model, the riser is divided into a number of small volume elements along the height. Volume elements are denoted with the symbol 'i' starting from bottom of the riser (feed inlet). Two phases (gas and solid) are considered in each volume element. The following assumptions are made in this model:

- Instantaneous vaporization of liquid feed occurs when it come in contact with the hot regenerated catalyst at the riser inlet. The catalyst and the gas phase then attain thermal equilibrium.
- Catalyst particles are assumed to move as clusters to account for the observed high slip velocities.
- Riser is adiabatic. The temperature inside the riser falls due to endothermicity of cracking reactions.
- The gas phase behaves ideally.
- Heat and mass transfer resistances are assumed as negligible.
- Both phases are in plug flow condition hence back mixing is neglected.

3.1.1 Model equations

Material balance:

The riser reactor of FFCU is divided into i number of compartments along its height. Each compartment is assumed to have two phase flow, gaseous and solid phase flow. At the inlet of riser liquid feed is instantaneously evaporated. Moreover inlet riser conditions are known to us (Mass of feed, temperature of feed, components present etc). Mass and moles of each element
formed or consumed in \(i^{th} \) compartment is calculated from the cracking reactions occurring inside that particular compartment (Figure 4). Average molecular weight, velocity of gas, cluster velocity, pressure and vapor density which changes along the height of riser are calculated in that particular compartment. Generally, outlet conditions for \((i-1)\) compartment are inlet conditions for next compartment i.e. \(i^{th} \)

Vacuum gas oil cracks in presence of catalyst to give gasoline, gas and coke. gasoline further cracks to give gas and coke. Coke formed is deposited on the surface of catalyst, which decreases the activity of the catalyst. Coke is later burned off from the surface of catalyst in regenerator to achieve its activity.
Mass balance for gas phase over \(i\)th compartment:

\[
\text{moles in from (i-1)th compartment - mass out from } i\text{th compartment } = \text{mass consumed/formed in } i\text{th compartment}
\]

\[
M_{j,(i-1)} - M_{j,i} = r_{j,i} MW_j \quad \text{for } j = 1 \text{ to } 3
\]

(1)

Mass balance over solid phase in \(i\)th compartment:

\[
\text{Rate of mass out from } i\text{th compartment - rate of mass in from (i-1)th compartment } = \text{coke formed in } i\text{th compartment}
\]

\[
(F_{rgc} + M_{4,(i-1)}) - (F_{rgc} + M_{4,i}) = r_{j,i} MW_4
\]

(2)

Table 2: Molecular weight of various lumps (Gupta and Subba Rao, 2001):

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>component</td>
<td>VGO</td>
<td>Gasoline</td>
<td>Gas</td>
<td>Coke</td>
</tr>
<tr>
<td>Mol. Wt.</td>
<td>382</td>
<td>120</td>
<td>45</td>
<td>12</td>
</tr>
</tbody>
</table>

Riser hydrodynamics:

As instantaneous vaporization of the gas oil is assumed a two phase riser hydrodynamic model is used. Riser hydrodynamics is modeled on the lines of the model used by Gupta et al. (2007). The catalyst particles are assumed to move as clusters.

Initial cluster volume fraction is assumed to be 0.2, and cluster voidage is assumed to be 0.5 (Gupta and Subba Rao, 2001).

Value of cluster volume holdup for each compartment is calculated as follows:

\[
\delta_{ci} = \frac{(F_{rgc} + M_{\text{coke} i})}{(\rho_c A_{ri} * v_{ci})}
\]

(3)

Gas volume fraction is calculated by following expression:

\[
\delta_{gi} = 1 - \delta_{ci}
\]

(4)

Solid phase momentum balance proposed by Tuso and Gidaspow, (1990) is applied assuming the change in the mass of solids along the riser height as negligible:

\[
\rho_c \delta_c v_c \frac{dv_c}{dz} = C_f (v_g - v_c) + \frac{2FS_c \rho_c v_c^2}{D} - \varepsilon_c \rho_c g
\]

(5)
Frictional forces per unit volume is calculated by following expression (Markatos and Shinghal, 1982):

\[F = 0.5C_D A_p \rho_g |v_g - v_c| (v_g - v_c) = C_f (v_g - v_c) \]

(6)

Drag coefficient is calculated on the basis of Reynolds number:

\[C_D = \frac{24}{Re} (1 + 0.15 Re^{0.687}) \text{ for } Re < 1000, \]

(7)

\[C_D = 0.44 \text{ for } Re \geq 1000 \]

(Arastoopour and Gidaspow, 1979)

(8)

Reynolds number is calculated using following expression:

\[Re = \frac{\rho_g \delta_g |v_g - v_c| d_c}{\mu_g} \]

(9)

Pressure drop along the riser height is estimated using on the lines of Pugsley and Berruti (1996). Authors have proposed the following four main components for pressure drop along the height of riser reactor.

\[\left(\frac{dP}{dz} \right)_{Total} = \left(\frac{dP}{dz} \right)_s + \left(\frac{dP}{dz} \right)_{acc} + \left(\frac{dP}{dz} \right)_{fs} + \left(\frac{dP}{dz} \right)_{fg} \]

(10)

Where pressure drop due to hydrostatic head of solids is represented as:

\[\left(\frac{dP}{dz} \right)_s = \rho_c g \delta_c \]

(11)

Pressure drop due to solids acceleration is given as:

\[\left(\frac{dP}{dz} \right)_{acc} = \frac{\rho_c \delta_c \Delta v_c^2}{2 \Delta z} \]

(12)

Pressure drop due to solid friction, defined as frictional force per unit volume between solids and wall of the riser reactor:

\[\left(\frac{dP}{dz} \right)_{fs} = \frac{2 f_p \rho_c \delta_c v_c^2}{D} \]

(13)

Pressure drop due to gas friction, defined as frictional force per unit volume between gas and solids:

\[\left(\frac{dP}{dz} \right)_{fg} = \frac{f_g \rho_g v_g^2}{D} \]

(14)

Gas friction factor is calculated from Blasius friction factor expressed as

\[f_g = 0.316 Re^{-1/4} \]

(15)

Solids friction factor is calculated from Konno's expression

\[f_p = 0.0025 \nu_c^{-1} \]

(16)
Pressure in the next volume element is calculated as

\[P_i = P_{i-1} - \left(\frac{dp}{dz} \right)_{Total} \Delta z \] (17)

Gas phase density is calculated using ideal gas law

\[\rho_{gi} = \frac{(P_i \times MW)}{(R \times T_i)} \] (18)

Velocity of solid phase can be calculated using the following expression

\[v_{ci} = \frac{F_{rgc}}{(A_{ris} \times \rho_c \times \delta_c \times i)} \] (19)

and gas velocity is calculated by

\[v_{gi} = \frac{M_{gas i}}{(A_{ris} \times \rho_{gi} \times \delta_{gi})} \] (20)

Superficial gas velocity is

\[v_i = \frac{M_{gas i}}{(\rho_{gi} \times A_{ris})} \] (21)

Reaction kinetics:

Four lump kinetic model is used in most of the FCC riser models due to its simplicity and ease of integrating it with material and energy balance equations. Four lump kinetic model is used by various researchers in their work (Lee et al., 1989; Gianetto et al., 1994; Pitault et al., 1995; Blasetti and de lasa, 1997; Berry et al., 2004; Gupta and Subba Rao, 2001, 2003; Nayak et al., 2005; Baurdez et al., 2010). A four lump reaction kinetics model (Figure 5) is used in the present work also.

![Figure 5: Schematic for four lump kinetic model.](image-url)
The rate of formation of the lumps (kmol/s) in the \(i\)th compartment are expressed as:

For VGO
\[
 r_{1,i} = -\phi_i (1 - \delta_g) \rho_c (K_1 + K_2 + K_3) C_{1,i-1}^2 (A_{ris} \Delta z) \tag{22}
\]

For gasoline
\[
 r_{2,i} = \phi_i (1 - \delta_g) \rho_c \left(a_1 K_1 C_{1,i}^2 - (K_4 + K_5) C_{2,i-1} \right) (A_{ris} \Delta z) \tag{23}
\]

For gas
\[
 r_{3,i} = \phi_i (1 - \delta_g) \rho_c \left(a_2 K_2 C_{1,i}^2 + a_4 K_4 C_{2,i} \right) (A_{ris} \Delta z) \tag{24}
\]

For coke
\[
 r_{4,i} = \phi_i (1 - \delta_g) \rho_c \left(a_3 K_3 C_{1,i}^2 + a_5 K_5 C_{2,i} \right) (A_{ris} \Delta z) \tag{25}
\]

Initial concentrations of the lumps at the inlet of riser are calculated using the following expressions:

gas oil:
\[
 C_1 = \frac{M_f}{(MW_{1} * v * A_{ris})} \tag{26}
\]

gasoline:
\[
 C_2 = 0 \tag{27}
\]

gas:
\[
 C_3 = 0 \tag{28}
\]

coke:
\[
 C_4 = \left(\frac{C_{coke} * F_{rc}}{MW_{coke} * v * A_{ris}} \right) \tag{29}
\]

Kinetic constants are predicted from Arrhenius expression:
\[
 K = K_0 \exp\left(-\frac{E}{RT} \right) \tag{30}
\]

Catalyst activity is calculated by the following expression (Pitault et al., 1995)
\[
 \phi_i = \frac{B+1}{B+\exp(A+C_{coke,i})} \tag{31}
\]

where, \(A= 4.29\) and \(B= 10.4\), and
Stoichiometric coefficient used in rate equations for various lumps are given in Table 3.

Table 3: Stoichiometric coefficients

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Stoichiometric coefficient</th>
<th>(a_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGO to gasoline</td>
<td>380/120</td>
<td>(a_1)</td>
</tr>
<tr>
<td>VGO to gas</td>
<td>380/45</td>
<td>(a_2)</td>
</tr>
<tr>
<td>VGO to coke</td>
<td>380/12</td>
<td>(a_3)</td>
</tr>
<tr>
<td>Gasoline to gas</td>
<td>120/45</td>
<td>(a_4)</td>
</tr>
<tr>
<td>Gasoline to coke</td>
<td>120/12</td>
<td>(a_5)</td>
</tr>
</tbody>
</table>

Energy balance:
At the inlet of the reactor temperature is calculated assuming instant vaporization of feed oil and assuming thermal equilibrium of both phases after vaporization of feed:

Heat lost by the catalyst = sensible heat gained of the liquid feed + heat required to vaporize the feed oil + sensible heat gain of the vaporized feed oil

\[
F_{rgc} \cdot C_p_{cat} \cdot (T_{cat} - T_{in}) = M_{feed} \cdot C_p_{fi} \cdot (T_v - T_f) + \lambda_f \cdot M_{feed} + M_{feed} \cdot C_p_{fv} \cdot (T_{in} - T_v)
\]

(33)

In the riser the temperature of the catalyst and gas decreases due to the endothermic cracking reactions. The heat of reaction data is given in Table 4.

Heat lost by the catalyst and gas in a volume element = \(\sum \) Heat of cracking of component \(j \) * moles of component \(j \) cracked

\[
(M_{gas} \cdot C_p_{fv} + F_{rgc} \cdot C_p_{cat}) \cdot (T_{i-1} - T_i) = \sum_{j=1}^{3} \cdot H_{rj} \cdot r_j
\]

(34)

using the above equation temperature for the next element is calculated as:

\[
T_i = T_{i-1} - \frac{\sum_{j=1}^{3} \cdot H_{rj} \cdot r_j}{\left((M_{gas} \cdot C_p_{fv} + F_{rgc} \cdot C_p_{cat} + M_{coke} \cdot C_p_{coke})\right)}
\]

(35)
Table 4: Heat of reaction data (Source: Dave and Saraf, 2003)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>H_r (kJ/kmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGO to gasoline</td>
<td>45000</td>
</tr>
<tr>
<td>VGO to gas</td>
<td>159315</td>
</tr>
<tr>
<td>VGO to coke</td>
<td>159315</td>
</tr>
<tr>
<td>Gasoline to gas</td>
<td>42420</td>
</tr>
<tr>
<td>Gasoline to coke</td>
<td>42420</td>
</tr>
</tbody>
</table>
Chapter 4

Results and discussion

In this chapter the FCC riser is simulated and validated against industrial data. The simulations are done using MATLAB. Plant data given in Table 5 reported by Ali et al. (1997) is used for the validation. The parameters used for the simulations are given in Table 6.

Table 5: Plant data used for riser simulation given by Ali et al. (1997)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed flow rate</td>
<td>20 kg/s</td>
</tr>
<tr>
<td>Catalyst flow rate</td>
<td>144 kg/s</td>
</tr>
<tr>
<td>Riser diameter</td>
<td>0.8 m</td>
</tr>
<tr>
<td>Riser pressure</td>
<td>2.9 atm</td>
</tr>
<tr>
<td>Catalyst inlet temperature</td>
<td>960.0 K</td>
</tr>
<tr>
<td>Riser height</td>
<td>33 m</td>
</tr>
</tbody>
</table>

Table 6: Parameters used for riser simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific heat of VGO (Liquid)</td>
<td>2.67 kJ/kg.K</td>
<td>Ali et al., 1997</td>
</tr>
<tr>
<td>Specific heat of VGO (vapor)</td>
<td>3.3 kJ/kg.K</td>
<td>Ali et al., 1997</td>
</tr>
<tr>
<td>Latent heat of vaporization</td>
<td>96 kJ/kg</td>
<td>Gupta and Subba Rao, 2001</td>
</tr>
<tr>
<td>Gas phase viscosity</td>
<td>1.3×10^5 kg/m.s</td>
<td>Gupta and Subba Rao, 2001</td>
</tr>
<tr>
<td>Catalyst Particle density</td>
<td>1200 kg/m3</td>
<td>Gupta et al., 2008</td>
</tr>
<tr>
<td>Catalyst particle diameter</td>
<td>75 microns</td>
<td>Gupta and Subba Rao, 2001</td>
</tr>
<tr>
<td>Specific heat of catalyst</td>
<td>1.15 kJ/kg.K</td>
<td>Ali et al., 1997</td>
</tr>
</tbody>
</table>
The yields of gasoline, gas, coke, and VGO conversion are shown as a function of riser height in Figure 6. The simulation results are matching well with the plant data. The values of kinetic parameters were adjusted to match the model results with the plant data (Table 7). The riser temperature profile is shown in Figure 7. The initial instant drop in the temperature is due the assumption of instantaneous vaporization and bringing the hydrocarbons in thermal equilibrium with the catalyst. The exit temperature predicted by the simulation deviates about 6% from the plant data. This deviation may be attributed to the variation in the values of heats of cracking.

Table 7: Kinetic parameters used in the model

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Pre exponential factor (m^6/kgcat.kmol.s)</th>
<th>Activation energy (kJ/kmol) (Gupta and Subba Rao, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGO to gasoline</td>
<td>946</td>
<td>68316</td>
</tr>
<tr>
<td>VGO to gas</td>
<td>11878</td>
<td>89303</td>
</tr>
<tr>
<td>VGO to coke</td>
<td>72</td>
<td>64638</td>
</tr>
<tr>
<td>Gasoline to gas</td>
<td>0.42043</td>
<td>52768</td>
</tr>
<tr>
<td>Gasoline to coke</td>
<td>0</td>
<td>115566</td>
</tr>
</tbody>
</table>
Figure 6: Conversion/ product yield along riser height
Figure 7: Temperature drop along riser height

Figure 8, 9 and 10 presents phase velocities, catalyst activity, and riser pressure respectively along the riser height. The profiles of phase velocities and catalyst activity match well with the literature predictions. The slip factor, defined as ratio of gas velocity to particulate velocity, is changing from about 1.4 at the inlet to about 2 at the outlet of the riser.
Figure 8: Phase velocities along riser height
Figure 9: Catalyst activity along riser height
Fligner et al. (1994) proposed a cluster model approach to explain experimentally observed high slip factors. The model simulations are done for various cluster sizes to study the effect of cluster size on the model predictions. The results are shown in Figure 11. The simulations are done for cluster sizes of 3 mm, 6 mm, 9 mm, and 12 mm. The results of cluster velocity show that the large clusters move slowly and spend more time in the riser. The product yields predicted at the riser exit for different cluster sizes are shown in Table 8.
Figure 11: Effect of cluster size on cluster phase velocity

Table 8: Model predictions of product yields at riser exit for different cluster sizes

<table>
<thead>
<tr>
<th>Product Yield (wt %)</th>
<th>Cluster diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3mm</td>
</tr>
<tr>
<td>gasoline</td>
<td>39.7</td>
</tr>
<tr>
<td>gas</td>
<td>21.61</td>
</tr>
<tr>
<td>coke</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Conclusions and Future Recommendations

Conclusions
The FCC riser reactor is simulated using MATLAB. The model incorporates two phase hydrodynamics, and a four lump kinetic model with catalyst deactivation as exponential function. The simulation results are matching very closely with the plant data. The effect of variation in cluster size on cluster phase velocity and products yields is also presented.

Recommendations
While modeling of riser reactor range of kinetic parameters of the lumps seems to vary a lot in the literature. The causes for this variation is the lumped nature of the kinetic parameters and their dependency on the catalyst and feed used for generating these parameters. Work should be done on the evaluation of these kinetic parameters for various lumped schemes. CFD models can be used to capture the complex phenomena at the riser inlet where most of the conversion takes place.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Stoichiometric coefficient</td>
</tr>
<tr>
<td>$A_p = 1.5 \left(\frac{c_e}{d_c} \right)$</td>
<td>Projected area per unit volume.</td>
</tr>
<tr>
<td>A_{ris}</td>
<td>Area of riser (m2)</td>
</tr>
<tr>
<td>$C_{coke,i}$</td>
<td>Coke on regenerated catalyst (wt %)</td>
</tr>
<tr>
<td>C_D</td>
<td>Interphase friction coefficient between two phases</td>
</tr>
<tr>
<td>$C_{p_{cat}}$</td>
<td>Specific heat of catalyst (kJ/kg.K)</td>
</tr>
<tr>
<td>$C_{p_{coke}}$</td>
<td>Specific heat of coke (kJ/kg.K)</td>
</tr>
<tr>
<td>$C_{p_{fl}}$</td>
<td>Specific heat of liquid feed (kJ.kg.K)</td>
</tr>
<tr>
<td>$C_{p_{fv}}$</td>
<td>Specific heat of vapor feed (kJ/kg.K)</td>
</tr>
<tr>
<td>d_c</td>
<td>Cluster diameter (m)</td>
</tr>
<tr>
<td>dz</td>
<td>Height increment (m)</td>
</tr>
<tr>
<td>E</td>
<td>Activation energy (kJ/kmol)</td>
</tr>
<tr>
<td>F_{rgc}</td>
<td>Catalyst circulation rate (kg/s)</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity (m/s)</td>
</tr>
<tr>
<td>H_r</td>
<td>Heat of reaction (kJ/kmol)</td>
</tr>
<tr>
<td>K_j</td>
<td>Kinetic rate constant (m6/kg$^{-1}$cat.kmol.s$^{-1}$)</td>
</tr>
<tr>
<td>K_o</td>
<td>Pre exponential rate constants (m6/kg$^{-1}$cat.kmol.s$^{-1}$)</td>
</tr>
<tr>
<td>$M_{j,i}$</td>
<td>Mass of jth element in ith compartment (kg/s)</td>
</tr>
<tr>
<td>M_{coke}</td>
<td>Mass of coke formed (kg/s)</td>
</tr>
<tr>
<td>M_f</td>
<td>Mass of feed (kg/s)</td>
</tr>
<tr>
<td>MW_j</td>
<td>Molecular weight of jth element (kg/kmol)</td>
</tr>
<tr>
<td>P_i</td>
<td>Pressure in ith compartment (atm)</td>
</tr>
<tr>
<td>$r_{j,i}$</td>
<td>Rate of jth element in ith compartment (kmol/s)</td>
</tr>
<tr>
<td>R</td>
<td>Universal gas constant (kJ/kmol.K)</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>T_{cat}</td>
<td>Temperature of regenerated catalyst (K)</td>
</tr>
<tr>
<td>T_i</td>
<td>Temperature in ith compartment (K)</td>
</tr>
<tr>
<td>T_{in}</td>
<td>Temperature of reaction mixture at inlet (K)</td>
</tr>
<tr>
<td>v_c</td>
<td>Velocity of cluster (m/s)</td>
</tr>
</tbody>
</table>
\(v_g \) Velocity of gas phase (m/s)

Greek symbols

\(\lambda_f \) Latent heat of vaporization (kJ/kg)
\(\delta_{c,i} \) Cluster volume holdup for \(i^{th} \) compartment
\(\delta_{g,i} \) Gas volume holdup for \(i^{th} \) compartment
\(\rho_g \) Density of gas (kg/m\(^3\))
\(\rho_c \) Density of cluster (kg/m\(^3\))
\(\Theta_i \) Catalyst activity in \(i^{th} \) compartment
\(\mu_g \) Viscosity of gas (kg/m.s)
References

Corella J. and Frances E., M. L. Occelli Ed., “Analysis of the riser reactor of a fluid cracking unit: Model based on kinetics of cracking and deactivation from laboratory tests”, in Fluid
catalytic cracking-II: Concepts in catalyst design, ACSsymposium series, American Chemical Society, Washington 1991a, 452, 165–182.,

